Response of organic carbon mineralization and bacterial communities to soft rock additions in sandy soils

Author:

Guo Zhen1234,Han Jichang1234,Li Juan1234

Affiliation:

1. Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an, Shaanxi, China

2. Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an, Shaanxi, China

3. Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources of China, Xi’an, Shaanxi, China

4. Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an, Shaanxi, China

Abstract

Bacteria play a vital role in biotransformation of soil organic carbon (SOC). However, mechanisms of bacterium and organic carbon mineralization remain unclear during improvement of sandy soil using soft rock additions. In this study, four treatments with differing ratios of soft rock to sand of 0:1 (CK), 1:5 (C1), 1:2 (C2) and 1:1 (C3) were selected for mineralization incubation and high-throughput sequencing. The results showed that SOC, total nitrogen (TN), available phosphorus (AP), nitrate nitrogen (NO${}_{3}^{-}$-N), and mass water content (WC) of sandy soil increased significantly after addition of soft rock (P < 0.05). Compared with the CK treatment, cumulative mineralization and potential mineralized organic carbon content of C1, C2 and C3 increased by 71.79%–183.86% and 71.08%–173.33%. The cumulative mineralization rates of organic carbon treated with C1 and C2 were lower, 16.96% and 17.78%, respectively (P > 0.05). The three dominant bacteria were Actinobacteria, Proteobacteria and Chloroflexi, among which Proteobacteria was negatively correlated with mineralization of organic carbon (P < 0.01). The mineralization rate constant (k) was positively correlated and negatively correlated with Cyanobacteria and Nitrospirae, respectively. Under C2 treatment, Proteobacteria and Nitrospirae had the largest increase, and Cyanobacteria had the largest decrease. Compared with other treatments, C2 treatment significantly increased bacterial diversity index, richness index and evenness index, and the richness index had a negative correlation with k value. In conclusion, when the ratio of soft rock to sand was 1:2, the k of SOC could be reduced. In addition, the retention time of SOC can be increased, and resulting carbon fixation was improved.

Funder

Fundamental Research Funds for the Central University, CHD

Fund Project of Shaanxi Key Laboratory of Land Consolidation

Shaanxi Provincial Land Engineering Construction Group internal research project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3