Food-burying behavior in red imported fire ants (Hymenoptera: Formicidae)

Author:

Qin Wenquan1ORCID,Chen Xuan2,Hooper-Bùi Linda M.3ORCID,Cai Jiacheng4,Wang Lei5,Sun Zhaohui1,Wen Xiujun1ORCID,Wang Cai1

Affiliation:

1. Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China

2. Department of Biology, Salisbury University, Salisbury, MD, USA

3. Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA

4. Department of Mathematics and Computer Science, Salisbury University, Salisbury, MD, USA

5. College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China

Abstract

The food-burying behavior has been reported in many mammals and birds, but was rarely observed in invertebrates. The red imported fire ants, Solenopsis invicta Buren, is an invasive pest in many areas of the world that usually performing food-burying during the foraging processes. However, the impacted factors and measureable patterns of this behavior is largely unknown. In the present study, food-burying vs food-transport behaviors of Solenopsis invicta were observed under laboratory and field conditions. When starved (no food was provided for 37 days) in the laboratory, food (sausage) was consumed by large numbers of ants, and few burying behaviors were observed. However, when food was provided until satiation of the colonies, food-transport was suppressed and significantly more soil particles were relocated on the food and graph paper square (where the food was placed) when compared with these colonies exposed to starved conditions. Videotapes showed that soil particles (1.47 ± 0.09 mm2) were preferentially placed adjacent to (in contact with) the food items at the beginning; and after the edges were covered, ants transported significantly smaller soil particles (1.13 ± 0.06 mm2) to cover the food. Meanwhile, larger particles (1.96 ± 0.08 mm2) were pulled/dragged around (but not in contact with) the food. Interestingly, only a small number of ants, mainly the small workers, were involved in food-burying, and the ants tended to repeatedly transport soil particles. A total of 12 patterns of particle transport were identified, and soil particles were most frequently picked from the foraging arena and subsequently placed adjacent to the food. In the field, almost all released food was actively transported by Solenopsis invicta workers, and no burying behavior was observed. Our results show that the food-burying behavior of Solenopsis invicta may be associated with the suppressed foraging activity, and the burying task may be carried out by certain groups of workers.

Funder

Pearl River S&T Nova Program of Guangzhou

Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3