Inducible nitric oxide synthase (NOS2) knockout mice as a model of trichotillomania

Author:

Casarotto Plinio C.12,Biojone Caroline13,Montezuma Karina3,Cunha Fernando Q.2,Joca Samia R.L.3,Castren Eero1,Guimaraes Francisco S.24

Affiliation:

1. Neuroscience Center, University of Helsinki, Helsinki, Finland

2. Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

3. Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

4. NAPNA: Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

Abstract

Background Trichotillomania (TTM) is an impulse control disorder characterized by repetitive hair pulling/trimming. Barbering behavior (BB) observed in laboratory animals is proposed as a model of TTM. The neurobiological basis of TTM is unclear, but involves striatal hyperactivity and hypoactivation of the prefrontal cortex. Methods In this study, we evaluated the BB in knockout mice for the inducible isoform of nitric oxide synthase (NOS2KO) and the consequences of silencing this enzyme in PC12 cell differentiation. Results NOS2KO exhibit exacerbated BB, starting four weeks of age, and increased repetitive movements compared to wild-type mice (WT). The expression of BB was attenuated by repeated treatment with clomipramine, a clinically approved drug to treat TTM in humans, or memantine, an antagonist of NMDA receptors, as well as partial rescue of NOS2 expression in haploinsufficient animals. The silencing of NOS2 expression reduced the MAP2 (microtubule-associated protein 2) levels in activity-induced differentiated PC12 cells. Discussion Our data led us to propose that NOS2 is putatively involved in the neuronal maturation of the inhibitory afferent pathways during neurodevelopment, and such inadequate inhibition of motor programs might be associated to the observed phenotype.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo—Fapesp

Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq

European Research Council

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3