Predicting Pinus monophylla forest cover in the Baja California Desert by remote sensing

Author:

Escobar-Flores Jonathan G.1ORCID,Lopez-Sanchez Carlos A.2ORCID,Sandoval Sarahi3,Marquez-Linares Marco A.1,Wehenkel Christian2

Affiliation:

1. Centro Interdisciplinario De Investigación para el Desarrollo Integral Regional, Unidad Durango, Instituto Politécnico Nacional, Durango, Durango, México

2. Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico

3. CONACYT—Instituto Politécnico Nacional, CIIDIR Unidad Durango, Durango, Durango, México

Abstract

The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the single-leaf pinyon (the world’s only one-needled pine), inhabits semi-arid zones of the Mojave Desert (southern Nevada and southeastern California, US) and also of northern Baja California (Mexico). This tree is distributed as a relict subspecies, at elevations of between 1,010 and 1,631 m in the geographically isolated arid Sierra La Asamblea, an area characterized by mean annual precipitation levels of between 184 and 288 mm. The aim of this research was (i) to estimate the distribution of P. monophylla var. californiarum in Sierra La Asamblea by using Sentinel-2 images, and (ii) to test and describe the relationship between the distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that (i) Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to the finer resolution (×3) and greater number of bands (×2) relative to Landsat-8 data, which is publically available free of charge and has been demonstrated to be useful for estimating forest cover, and (ii) the topographical variables aspect, ruggedness and slope are particularly important because they represent important microhabitat factors that can determine the sites where conifers can become established and persist. An atmospherically corrected a 12-bit Sentinel-2A MSI image with 10 spectral bands in the visible, near infrared, and short-wave infrared light region was used in combination with the normalized differential vegetation index (NDVI). Supervised classification of this image was carried out using a backpropagation-type artificial neural network algorithm. Stepwise multiple linear binominal logistical regression and Random Forest classification including cross validation were used to model the associations between presence/absence of P. monophylla and the five topographical and 18 climate variables. Using supervised classification of Sentinel-2 satellite images, we estimated that P. monophylla covers 6,653 ± 319 ha in the isolated Sierra La Asamblea. The NDVI was one of the variables that contributed most to the prediction and clearly separated the forest cover (NDVI > 0.35) from the other vegetation cover (NDVI < 0.20). Ruggedness was the most influential environmental predictor variable, indicating that the probability of occurrence of P. monophylla was greater than 50% when the degree of ruggedness terrain ruggedness index was greater than 17.5 m. The probability of occurrence of the species decreased when the mean temperature in the warmest month increased from 23.5 to 25.2 °C. Ruggedness is known to create microclimates and provides shade that minimizes evapotranspiration from pines in desert environments. Identification of the P. monophylla stands in Sierra La Asamblea as the most southern populations represents an opportunity for research on climatic tolerance and community responses to climate variability and change.

Funder

National Council of Science and Technology (CONACYT)

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference64 articles.

1. El índice kappa;Abraira;Semergen,2001

2. A global overview of drought and heat-induced tree mortality reveals emerging climatic change risks for forest;Allen;Forest Ecology and Management,2010

3. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS);Allouche;Journal of Applied Ecology,2006

4. Slope aspect modifies community responses to clear‐cutting in boreal forests;Åström;Ecology,2007

5. A study of Pinus subsection Cembroides. The single-needle pinyons of the Californias and the Great Basin;Bailey;Notes from the Royal Botanic Garden, Edinburgh,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3