Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: respiration, digestion, immunity and oxidative damage

Author:

Huo Da123,Sun Lina12,Ru Xiaoshang123,Zhang Libin12,Lin Chenggang12,Liu Shilin12ORCID,Xin Xiaoke123,Yang Hongsheng12

Affiliation:

1. CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

2. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

3. University of Chinese Academy of Sciences, Beijing, China

Abstract

Hypoxia is one of the most frequently occurring stressors confronted by industrial cultures of sea cucumber and can cause large economic losses and resource degradation. However, its responsive mechanisms are still lacking. In this paper, the physiological responses of Apostichopus japonicus to oxygen deficiency was illustrated, including induced oxidative response and immune defense and changed digestive enzymes activities. Significantly increased activities of alpha-amylase (AMS), acid phosphatase (ACP), lactate dehydrogenase, catalase, peroxidase, succinate dehydrogenase and higher content of malondialdehyde, and decreased activities of lipase and trypsin (TRY) were observed after hypoxia exposure (dissolved oxygen [DO] 2 mg/L). Expressions of key genes showed that AMS, peptidase, ACP, alkaline phosphatase, lysozyme, heat shock protein 70 and glutathione peroxidase were increased and TRY was decreased under hypoxia. With the decline of the DO level, the decreased tendency of oxygen consumption rates was different in varied weight groups. Moreover, respiratory trees were observed degraded under long-term hypoxia stress, thus leading a negative effect of respiration. These results could help to develop a better understanding of the responsive mechanism of sea cucumber under hypoxia stress and provide a theoretical basis for the prevention of hypoxia risk.

Funder

National Natural Science Foundation of China

Qingdao Applied Basic Research Program

NSFC-Shandong Joint Fund for Marine Science Research Centers

Open Research Fund Program of Guangxi Key Laboratory of Marine Biotechnology

Creative Team Project of the Laboratory for Marine Ecology and Environmental Science

Qingdao National Laboratory for Marine Science and Technology

Taishan Scholars Program

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3