Evaluation of three wheat (Triticum aestivum L.) cultivars as sensitive Cd biomarkers during the seedling stage

Author:

He Chuntao12,Ding Zhihai2,Mubeen Samavia2,Guo Xuying2,Fu Huiling2,Xin Guorong12

Affiliation:

1. Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Sun Yat-sen Universtiy, Guangzhou, China

2. School of Life Sciences, Sun Yat-sen Universtiy, Guangzhou, China

Abstract

Sensitive seedling crops have been developed to monitor Cadmium (Cd) contamination in agricultural soil. In the present study, 18 parameters involving growth conditions and physiological performances were assessed to evaluate Cd-responses of three wheat (Triticum aestivum L.) cultivars, Xihan1 (XH), Longzhong1 (LZ) and Dingfeng16 (DF). Principle component analysis illustrated that Factor 1, representing growth performance, soluble sugar content and catalase activity, responded to the Cd treatments in a dose dependent manner, while Factor 2 represented by chlorophyll content and germinating root growth was mainly dependent on cultivar differences. Higher inhibition rates were observed in growth performance than in physiological responses, with the highest inhibition rates of shoot biomasses (39.6%), root length (58.7%), root tip number (57.8%) and bifurcation number (83.2%), even under the lowest Cd treatment (2.5 mg·L−1). According to the Cd toxicity sensitivity evaluation, DF exerted highest tolerance to Cd stress in root growth while LZ was more sensitive to Cd stress, suggesting LZ as an ideal Cd contaminant biomarker. This study will provide novel insight into the cultivar-dependent response during using wheat seedlings as Cd biomarkers.

Funder

National Water Pollution Control and Governance of Science and Technology Major Special

Zhang-Hongda Science Foundation of Sun Yat-sen University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3