Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C

Author:

Gilman Alexey1,Fu Yanfen1,Hendershott Melissa2,Chu Frances3,Puri Aaron W.1,Smith Amanda Lee4,Pesesky Mitchell1,Lieberman Rose5,Beck David A.C.16,Lidstrom Mary E.17

Affiliation:

1. Department of Chemical Engineering, University of Washington, Seattle, WA, United States of America

2. Allen Institute for Cell Science, Seattle, WA, USA

3. InBios, Seattle, WA, USA

4. Zymo Genetics, Seattle, WA, USA

5. Department of Biology, George Washington University, Washington, D.C., USA

6. eScience Institute, University of Washington, Seattle, WA, USA

7. Department of Microbiology, University of Washington, Seattle, WA, USA

Abstract

The bacteria that grow on methane aerobically (methanotrophs) support populations of non-methanotrophs in the natural environment by excreting methane-derived carbon. One group of excreted compounds are short-chain organic acids, generated in highest abundance when cultures are grown under O2-starvation. We examined this O2-starvation condition in the methanotroph Methylomicrobium buryatense 5GB1. The M. buryatense 5GB1 genome contains homologs for all enzymes necessary for a fermentative metabolism, and we hypothesize that a metabolic switch to fermentation can be induced by low-O2 conditions. Under prolonged O2-starvation in a closed vial, this methanotroph increases the amount of acetate excreted about 10-fold, but the formate, lactate, and succinate excreted do not respond to this culture condition. In bioreactor cultures, the amount of each excreted product is similar across a range of growth rates and limiting substrates, including O2-limitation. A set of mutants were generated in genes predicted to be involved in generating or regulating excretion of these compounds and tested for growth defects, and changes in excretion products. The phenotypes and associated metabolic flux modeling suggested that in M. buryatense 5GB1, formate and acetate are excreted in response to redox imbalance. Our results indicate that even under O2-starvation conditions, M. buryatense 5GB1 maintains a metabolic state representing a combination of fermentation and respiration metabolism.

Funder

NSF

University of Washington eScience Institute

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3