Simulating highly disturbed vegetation distribution: the case of China’s Jing-Jin-Ji region

Author:

Yi Sangui12,Zhou Jihua1,Lai Liming1,Du Hui1,Sun Qinglin12,Yang Liu12,Liu Xin12,Liu Benben12,Zheng Yuanrun1

Affiliation:

1. Key Laboratory of Plant Resources, West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

Abstract

Background Simulating vegetation distribution is an effective method for identifying vegetation distribution patterns and trends. The primary goal of this study was to determine the best simulation method for a vegetation in an area that is heavily affected by human disturbance. Methods We used climate, topographic, and spectral data as the input variables for four machine learning models (random forest (RF), decision tree (DT), support vector machine (SVM), and maximum likelihood classification (MLC)) on three vegetation classification units (vegetation group (I), vegetation type (II), and formation and subformation (III)) in Jing-Jin-Ji, one of China’s most developed regions. We used a total of 2,789 vegetation points for model training and 974 vegetation points for model assessment. Results Our results showed that the RF method was the best of the four models, as it could effectively simulate vegetation distribution in all three classification units. The DT method could only simulate vegetation distribution in units I and II, while the other two models could not simulate vegetation distribution in any of the units. Kappa coefficients indicated that the DT and RF methods had more accurate predictions for units I and II than for unit III. The three vegetation classification units were most affected by six variables: three climate variables (annual mean temperature, mean diurnal range, and annual precipitation), one geospatial variable (slope), and two spectral variables (Mid-infrared ratio of winter vegetation index and brightness index of summer vegetation index). Variables Combination 7, including annual mean temperature, annual precipitation, mean diurnal range and precipitation of driest month, produced the highest simulation accuracy. Conclusions We determined that the RF model was the most effective for simulating vegetation distribution in all classification units present in the Jing-Jin-Ji region. The RF model produced high accuracy vegetation distributions in classification units I and II, but relatively low accuracy in classification unit III. Four climate variables were sufficient for vegetation distribution simulation in such region.

Funder

National Key R & D Program of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3