Evaluating Eucalyptus leaf colonization by Brasilonema octagenarum (Cyanobacteria, Scytonemataceae) using in planta experiments and genomics

Author:

Alvarenga Danillo O.12,Franco Maione W.3,Sivonen Kaarina2,Fiore Marli F.4,Varani Alessandro M.1

Affiliation:

1. Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil

2. Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland

3. Departamento de Biologia Vegetal, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil

4. Divisão de Produtividade Agroindustrial e Alimentos, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil

Abstract

Background Brasilonema is a cyanobacterial genus found on the surface of mineral substrates and plants such as bromeliads, orchids and eucalyptus. B. octagenarum stands out among cyanobacteria due to causing damage to the leaves of its host in an interaction not yet observed in other cyanobacteria. Previous studies revealed that B. octagenaum UFV-E1 is capable of leading eucalyptus leaves to suffer internal tissue damage and necrosis by unknown mechanisms. This work aimed to investigate the effects of B. octagenarum UFV-E1 inoculation on Eucalyptus urograndis and to uncover molecular mechanisms potentially involved in leaf damage by these cyanobacteria using a comparative genomics approach. Results Leaves from E. urograndis saplings were exposed for 30 days to B. octagenarum UFV-E1, which was followed by the characterization of its genome and its comparison with the genomes of four other Brasilonema strains isolated from phyllosphere and the surface of mineral substrates. While UFV-E1 inoculation caused an increase in root and stem dry mass of the host plants, the sites colonized by cyanobacteria on leaves presented a significant decrease in pigmentation, showing that the cyanobacterial mats have an effect on leaf cell structure. Genomic analyses revealed that all evaluated Brasilonema genomes harbored genes encoding molecules possibly involved in plant-pathogen interactions, such as hydrolases targeting plant cell walls and proteins similar to known virulence factors from plant pathogens. However, sequences related to the type III secretory system and effectors were not detected, suggesting that, even if any virulence factors could be expressed in contact with their hosts, they would not have the structural means to actively reach plant cytoplasm. Conclusions Leaf damage by this species is likely related to the blockage of access to sunlight by the efficient growth of cyanobacterial mats on the phyllosphere, which may hinder the photosynthetic machinery and prevent access to some essential molecules. These results reveal that the presence of cyanobacteria on leaf surfaces is not as universally beneficial as previously thought, since they may not merely provide the products of nitrogen fixation to their hosts in exchange for physical support, but in some cases also hinder regular leaf physiology leading to tissue damage.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference91 articles.

1. Cyanobacterial plant symbioses;Adams,2013

2. A novel epiphytic cyanobacterial species from the genus Brasilonema causing damage to Eucalyptus leaves;Aguiar;Journal of Phycology,2008

3. PhiSphy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies;Akhter;Nucleic Acids Research,2012

4. Simple conditions for growth of unicellular blue–green algae on plates;Allen;Journal of Phycology,1968

5. A practical guide for comparative genomics of mobile genetic elements in prokaryotic genomes;Alvarenga,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3