Characteristics of the soil microbial community in the forestland of Camellia oleifera

Author:

Zhang Peng12,Cui Zhiyi2,Guo Mengqing1,Xi Ruchun13

Affiliation:

1. College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China

2. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China

3. The State Key Laboratory for Conservation and Utilization of Subtropical Agro–Bioresources, Guangzhou, China

Abstract

Characterizing soil microbial community is important for forest ecosystem management and microbial utilization. The microbial community in the soil beneath Camellia oleifera, an important woody edible oil tree in China, has not been reported before. Here, we used Illumina sequencing of 16S and ITS rRNA genes to study the species diversity of microorganisms in C. oleifera forest land in South China. The results showed that the rhizosphere soil had higher physicochemical properties, enzyme activities and microbial biomass than did the non-rhizosphere soil. The rhizosphere soil microorganisms had a higher carbon source utilization capacity than the non-rhizosphere soil microorganisms, and attained the highest utilization capacity in summer. The soil microbial community of C. oleifera was characterized by rich ester and amino acid carbon sources that played major roles in the principal functional components of the community. In summer, soil microbes were abundant in species richness and very active in community function. Rhizosphere microorganisms were more diverse than non-root systems in species diversity, which was associated with soil pH, Available phosphorous (AP) and Urease (URE). These results indicated that microbial resources were rich in rhizosphere soil. A priority should be given to the rhizosphere microorganisms in the growing season in developing and utilizing soil microorganisms in C. oleifera plantation. It is possible to promote the growth of C. oleifera by changing soil microbial community, including carbon source species, pH, AP, and URE. Our findings provide valuable information to guide microbial isolation and culturing to manage C. oleifera land.

Funder

National Key Research and Development Program of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3