Woodlice change the habitat use of spiders in a different food chain

Author:

Guiliano Stefanie M.1,Karr Cerina M.1,Sommer Nathalie R.2,Buchkowski Robert W.23

Affiliation:

1. Northeastern University, Boston, MA, United States of America

2. School of Forestry & Environmental Studies, Yale University, New Haven, CT, United States of America

3. Department of Biology, University of Western Ontario, London, Canada

Abstract

Background In old field systems, the common woodlouse may have an indirect effect on a nursery web spider. Woodlice and nursery web spiders feed in different food chains, yet previous work demonstrated that the presence of woodlice is correlated with higher predation success by nursery web spiders upon their grasshopper prey. This finding suggested a new hypothesis which links two seemingly disparate food chains: when woodlice are present, the spider predator or the grasshopper prey changes their location in the vegetative canopy in a way that increases their spatial overlap and therefore predation rate. However, warming temperatures may complicate this phenomenon. The spider cannot tolerate thermal stress, meaning warming temperatures may cause the spider to move downwards in the vegetative canopy or otherwise alter its response to woodlice. Therefore, we would expect warming and woodlice presence to have an interactive effect on predation rate. Methods We conducted behavioral experiments in 2015, 2017, and 2018 to track habitat domains—the use of the vegetative canopy space by grasshoppers and spiders—in experimental cages. Then, we used three models of spider movement to try to explain the response of spiders to woodlice: expected net energy gain, signal detection theory, and individual-based modelling. Results Habitat domain observations revealed that spiders shift upward in the canopy when woodlice are present, but the corresponding effect on grasshopper prey survival was variable over the different years of study. Under warming conditions, spiders remained lower in the canopy regardless of the presence of woodlice, suggesting that thermal stress is more important than the effect of woodlice. Our modelling results suggest that spiders do not need to move away from woodlice to maximize net energy gain (expected net energy gain and signal detection theory models). Instead spider behavior is consistent with the null hypothesis that they move away from unsuccessful encounters with woodlice (individual-based simulation). We conclude that mapping how predator behavior changes across biotic (e.g. woodlouse presence) and abiotic conditions (e.g. temperature) may be critical to anticipate changes in ecosystem dynamics.

Funder

Schiff Fund and the Yale School of Forestry & Environmental Studies

Natural Sciences and Engineering Research Council of Canada

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3