Genetic consequences of pond production of a pikeperch (Sander lucioperca L.) stock with natural origin: the effects of changed selection pressure and reduced population size

Author:

Molnár Tamás123ORCID,Benedek Ildikó1,Kovács Balázs2ORCID,Zsolnai Attila4,Lehoczky István3ORCID

Affiliation:

1. Institute of Environmental Sciences and Nature Conservation, Kaposvár University, Kaposvár, Hungary

2. Department of Aquaculture, Szent István University, Gödöllő, Hungary

3. Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, Gödöllő, Hungary

4. Research Institute for Animal Breeding, Nutrition and Meat Science (ATHK), National Agricultural Research and Innovation Centre, Herceghalom, Hungary

Abstract

The pikeperch (Sander lucioperca L.) possesses great potential for diversifying European aquaculture. However, studies on the genetic risk of stocking natural waters with farmed individuals of this species have been limited. Even the effect of pond culture on the genetic composition of stocks with natural-origin has not yet been determined. Our study aimed to compare the genetic variability of a wild living pikeperch population, a pond cultured broodstock (originating from the wild population) and its offspring generation. We also aimed to detect the potential signs of selection using three different methods. By analyzing the molecular data with 14 microsatellite markers, we illustrated that the impact of pond culture on the genetic diversity of fish stocks is similar to hatchery rearing due to its diversity reducing effect caused by using lower effective population sizes. Although the heterozygosity was similar in all populations (Ho = 0.68–0.71), the average number of alleles and allelic richness were significantly lower in the pond cultured stocks (NA = 7.5 and 6; AR = 7.5 and 5.9) compared to the wild population (NA = 11.00, AR = 10.47). Despite the semi-natural conditions of the present study, we detected changing selection pressure in one of the 14 microsatellite markers.

Funder

National Research, Development and Innovation Office

European Union and the European Regional and Development Fund

Government of Hungary

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3