Denitrifying metabolism of the methylotrophic marine bacteriumMethylophaga nitratireducenticrescensstrain JAM1

Author:

Mauffrey Florian12,Cucaita Alexandra1,Constant Philippe1,Villemur Richard1

Affiliation:

1. INRS–Institut Armand-Frappier, Laval, Québec, Canada

2. Laboratoire de santé publique du Québec, Ste-Anne-de-Bellevue, Québec, Canada

Abstract

BackgroundMethylophaga nitratireducenticrescensstrain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate (${\mathrm{NO}}_{3}^{-}$) to nitrite (${\mathrm{NO}}_{2}^{-}$). These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar). Strain JAM1 also contains gene clusters encoding two nitric oxide (NO) reductases and one nitrous oxide (N2O) reductase, suggesting that NO and N2O can be reduced by strain JAM1. Here we characterized further the denitrifying activities ofM. nitratireducenticrescensJAM1.MethodsSeries of oxic and anoxic cultures of strain JAM1 were performed with N2O, ${\mathrm{NO}}_{3}^{-}$ or sodium nitroprusside, and growth and N2O, ${\mathrm{NO}}_{3}^{-}$, ${\mathrm{NO}}_{2}^{-}$ and N2concentrations were measured. Ammonium (${\mathrm{NH}}_{4}^{+}$)-free cultures were also tested to assess the dynamics of N2O, ${\mathrm{NO}}_{3}^{-}$ and ${\mathrm{NO}}_{2}^{-}$. Isotopic labeling of N2O was performed in15NH4+-amended cultures. Cultures with the JAM1ΔnarG1narG2double mutant were performed to assess the involvement of the Nar systems on N2O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochromebc-type nitric oxide reductase (cnorB1andcnorB2) and nitrous oxide reductase (nosZ), and alsonnrSandnorRthat encode NO-sensitive regulators.ResultsStrain JAM1 can reduce NO to N2O and N2O to N2and can sustain growth under anoxic conditions by reducing N2O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory ${\mathrm{NO}}_{2}^{-}$ reductase, ${\mathrm{NO}}_{3}^{-}$-amended cultures produce N2O, representing up to 6% of the N-input. ${\mathrm{NO}}_{2}^{-}$ was shown to be the key intermediate of this production process. Upregulation in the expression of cnorB1,cnorB2, nnrSandnorRduring the growth and the N2O accumulation phases suggests NO production in strain JAM1 cultures.DiscussionBy showing that all the three denitrification reductases are active, this demonstrates thatM. nitratireducenticrescensJAM1 is one of many bacteria species that maintain genes associated primarily with denitrification, but not necessarily related to the maintenance of the entire pathway. The reason to maintain such an incomplete pathway could be related to the specific role of strain JAM1 in the denitrifying biofilm of the denitrification reactor from which it originates. The production of N2O in strain JAM1 did not involve Nar, contrary to what was demonstrated inEscherichia coli.M. nitratireducenticrescensJAM1 is the only reportedMethylophagaspecies that has the capacity to grow under anoxic conditions by using ${\mathrm{NO}}_{3}^{-}$ and N2O as sole electron acceptors for its growth. It is also one of a few marine methylotrophs that is studied at the physiological and genetic levels in relation to its capacity to perform denitrifying activities.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3