Metabolic cost of walking with electromechanical ankle exoskeletons under proportional myoelectric control on a treadmill and outdoors

Author:

Hybart Rachel1,Villancio-Wolter K. Siena1,Ferris Daniel Perry1

Affiliation:

1. J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America

Abstract

Lower limb robotic exoskeletons are often studied in the context of steady state treadmill walking in a laboratory environment. However, the end goal for exoskeletons is to be used in real world, complex environments. To reach the point that exoskeletons are openly adopted into our everyday lives, we need to understand how the human and robot interact outside of a laboratory. Metabolic cost is often viewed as a gold standard metric for measuring exoskeleton performance but is rarely used to evaluate performance at non steady state walking outside of a laboratory. In this study, we tested the effects of robotic ankle exoskeletons under proportional myoelectric control on the cost of transport of walking both inside on a treadmill and outside overground. We hypothesized that walking with the exoskeletons would lead to a lower cost of transport compared to walking without them both on a treadmill and outside. We saw no significant increases or decreases in cost of transport or exoskeleton mechanics when walking with the exoskeletons compared to walking without them both on a treadmill and outside. We saw a strong negative correlation between walking speed and cost of transport when walking with and without the exoskeletons. In the future, research should consider how performing more difficult tasks, such as incline and loaded walking, affects the cost of transport while walking with and without robotic ankle exoskeletons. The value of this study to the literature is that it emphasizes the importance of both hardware dynamics and controller design towards reducing metabolic cost of transport with robotic ankle exoskeletons. When comparing our results to other studies using the same hardware with different controllers or very similar controllers with different hardware, there are a wide range of outcomes as to metabolic benefit.

Funder

National Institute of Health

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference58 articles.

1. Powered ankle-foot prosthesis improves walking metabolic economy;Au;IEEE Transactions on Robotics,2009

2. Derivation of formulae used to calculate energy expenditure in man;Brockway;Human Nutrition: Clinical Nutrition,1987

3. Energetic cost and preferred speed of walking in obese vs. normal weight women;Browning;Obesity Research,2005

4. The effects of adding mass to the legs on the energetics and biomechanics of walking;Browning;Medicine and Science in Sports and Exercise,2007

5. Reducing the energy cost of human walking using an unpowered exoskeleton;Collins;Nature,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3