Development of a novel prediction model based on protein structure for identifying RPE65-associated inherited retinal disease (IRDs) of missense variants

Author:

Wu Jiawen1,Sun Zhongmou2,Zhang Dao wei1,Liu Hong-Li1,Li Ting1,Zhang Shenghai1345,Wu Jihong1345

Affiliation:

1. Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China

2. University of Rochester School of Medicine and Dentistry, New York, United States of America

3. Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China

4. State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China

5. Key Laboratory of Myopia, Ministry of Health, Shanghai, China

Abstract

Purpose This study aimed to develop a prediction model to classify RPE65-mediated inherited retinal disease (IRDs) based on protein secondary structure and to analyze phenotype-protein structure correlations of RPE65 missense variants in a Chinese cohort. Methods Pathogenic or likely pathogenic missense variants of RPE65 were obtained from UniProt, ClinVar, and HGMD databases. The three-dimensional structure of RPE65 was retrieved from the Protein Data Bank (PDB) and modified with Pymol software. A novel prediction model was developed using LASSO regression and multivariate logistic regression to identify RPE65-associated IRDs. A total of 21 Chinese probands with RPE65 variants were collected to analyze phenotype-protein structure correlations of RPE65 missense variants. Results The study found that both pathogenic and population missense variants were associated with structural features of RPE65. Pathogenic variants were linked to sheet, β-sheet, strands, β-hairpins, Fe2+ (iron center), and active site cavity, while population variants were related to helix, loop, helices, and helix–helix interactions. The novel prediction model showed accuracy and confidence in predicting the disease type of RPE65 variants (AUC = 0.7531). The study identified 25 missense variants in Chinese patients, accounting for 72.4% of total mutations. A significant correlation was observed between clinical characteristics of RPE65-associated IRDs and changes in amino acid type, specifically for missense variants of F8 (H68Y, P419S). Conclusion The study developed a novel prediction model based on the protein structure of RPE65 and investigated phenotype-protein structure correlations of RPE65 missense variants in a Chinese cohort. The findings provide insights into the precise diagnosis of RPE65-mutated IRDs.

Funder

Program of Shanghai Academic Research Leader

Aging and women’s and children’s health Special project of Shanghai Municipal Health Commission

Shanghai Municipal Science and Technology Major Projects

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3