Barnacles as biological flow indicators

Author:

Reustle Joseph W.N.L.1,Belgrad Benjamin A.2,McKee Amberle2,Smee Delbert L.23

Affiliation:

1. Department of Marine and Environmental Science, Hampton University, Hampton, VA, United States of America

2. Dauphin Island Sea Lab, Dauphin Island, AL, United States of America

3. School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, United States of America

Abstract

Hydrodynamic stress shapes the flora and fauna that exist in wave-swept environments, alters species interactions, and can become the primary community structuring agent. Yet, hydrodynamics can be difficult to quantify because instrumentation is expensive, some methods are unreliable, and accurately measuring spatial and temporal differences can be difficult. Here, we explored the utility of barnacles as potential biological flow-indicators. Barnacles, nearly ubiquitous within estuarine environments, have demonstrated notable phenotypic plasticity in the dimensions of their feeding appendages (cirri) and genitalia in response to flow. In high flow, barnacles have shorter, stockier cirri with shorter setae; in low flow, barnacles have longer, thinner cirri with longer setae. By measuring the relative differences in cirral dimensions, comparative differences in flow among locations can be quantified. We tested our hypothesis that ivory barnacles (Amphibalanus eburneus) could be useful biological flow indicators in two experiments. First, we performed reciprocal transplants of A. eburneus between wave protected and wave exposed areas to assess changes in morphology over 4 weeks as well as if changes dissipated when barnacles were relocated to a different wave habitat. Then, in a second study, we transplanted barnacles into low (<5 cm/s) and high flow (>25 cm/s) environments that were largely free of waves and shielded half of the transplanted barnacles to lessen flow speed. In both experiments, barnacles had significant differences in cirral morphologies across high and low flow sites. Transplanting barnacles revealed phenotypic changes occur within two weeks and can be reversed. Further, ameliorating flow within sites did not affect barnacle morphologies in low flow but had pronounced effects in high flow environments, suggesting that flow velocity was the primary driver of barnacle morphology in our experiment. These results highlight the utility of barnacles as cheap, accessible, and biologically relevant indicators of flow that can be useful for relative comparisons of flow differences among sites.

Funder

Dauphin Island Sea Lab

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3