Analysis of self-renewing and differentiation-related microRNAs and transcription factors in multilineage mouse hematopoietic stem/progenitor cells induced by 1,4-benzoquinone

Author:

Dewi Ramya1,Yusoff Nur Afizah1,Abdul Razak Siti Razila2,Abd Hamid Zariyantey1

Affiliation:

1. Biomedical Science Programme and Centre of Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia

2. Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia

Abstract

Background HSPCs are targets for benzene-induced hematotoxicity and leukemogenesis. However, benzene toxicity targeting microRNAs (miRNAs) and transcription factors (TF) that are involve in regulating self-renewing and differentiation of HSPCs comprising of different hematopoietic lineages remains poorly understood. In this study, the effect of a benzene metabolite, 1,4-benzoquinone (1,4-BQ) exposure, in HSPCs focusing on the self-renewing (miRNAs: miR-196b and miR-29a; TF: HoxB4, Bmi-1) and differentiation (miRNAs: miR-181a, TF: GATA3) pathways were investigated. Methods Freshly isolated mouse BM cells were initially exposed to 1,4-BQ at 1.25 to 5 µM for 24 h, followed by miRNAs and TF studies in BM cells. Then, the miRNAs expression was further evaluated in HSPCs of different lineages comprised of myeloid, erythroid and pre-B lymphoid progenitors following 7–14 days of colony forming unit (CFU) assay. Results Exposure to 1,4-BQ in BM cells significantly (p < 0.05) reduced the miR-196b (2.5 and 5 µM), miR-181a (1.25, 2.5 and 5 µM) and miR-29a (1.25 µM) along with upregulation of miR-29a at 2.5 µM. Meanwhile, 1,4-BQ exposure in HSPCs significantly increased the miR-196b expression level (p < 0.05) only in myeloid and pre-B lymphoid progenitors at 2.5 and 5 µM. Significant (p < 0.05) reduction in expression of miR-181a in myeloid (1.25 µM), erythroid (5 µM) progenitors along with miR-29a in myeloid (1.25 µM) and pre-B lymphoid (5 µM) progenitors were noted following exposure to 1,4-BQ. Meanwhile, increased expression of miR-181a was observed in pre-B lymphoid progenitor upon exposure to 1,4-BQ, but only at 5 µM. As for TF studies, expression of HoxB4 protein was significantly increased (p < 0.05) at all 1,4-BQ concentrations as compared to Bmi-1 and GATA3, which were significantly (p < 0.05) elevated starting at 2.5 µM of 1,4-BQ. Conclusion 1,4-BQ induces aberration of miRNAs and transcription factors protein expression that are involved in regulating self-renewing and differentiation pathways of HSPCs. Moreover, epigenetic toxicity as evidenced from the miRNAs expression was found to be mediated by a lineage-driven mechanism. The role of cell lineage in governing the toxicity of 1,4-BQ in HSPCs lineages deserves further investigation.

Funder

Fundamental Research Grant Scheme (FRGS), UKM

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3