Evaluation of DNA metabarcoding for identifying fish eggs: a case study on the West Florida Shelf

Author:

Breitbart MyaORCID,Kerr Makenzie,Schram Michael J.ORCID,Williams Ian,Koziol Grace,Peebles Ernst,Stallings Christopher D.

Abstract

A critical factor in fisheries management is the protection of spawning sites for ecologically and economically important fish species. DNA barcoding (i.e., amplification and sequencing of the mitochondrial cytochrome c oxidase I (COI) gene) of fish eggs has emerged as a powerful technique for identifying spawning sites. However, DNA barcoding of individual fish eggs is time-consuming and expensive. In an attempt to reduce costs and effort for long-term fisheries monitoring programs, here we used DNA metabarcoding, in which DNA is extracted and amplified from a composited sample containing all the fish eggs collected at a given site, to identify fish eggs from 49 stations on the West Florida Shelf. A total of 37 taxa were recovered from 4,719 fish eggs. Egg distributions on the West Florida Shelf corresponded with the known habitat types occupied by these taxa, which included burrower, coastal pelagic, epipelagic, mesopelagic, demersal, deep demersal, commensal, and reef-associated taxa. Metabarcoding of fish eggs was faster and far less expensive than barcoding individual eggs; however, this method cannot provide absolute taxon proportions due to variable copy numbers of mitochondrial DNA in different taxa, different numbers of cells within eggs depending on developmental stage, and PCR amplification biases. In addition, some samples yielded sequences from more taxa than the number of eggs present, demonstrating the presence of contaminating DNA and requiring the application of a threshold proportion of sequences required for counting a taxon as present. Finally, we review the advantages and disadvantages of using metabarcoding vs. individual fish egg barcoding for long-term monitoring programs.

Funder

Florida Institute of Oceanography’s RESTORE Act Centers of Excellence Program

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3