The effects of trunk kinematics and EMG activity of wheelchair racing T54 athletes on wheelchair propulsion speeds

Author:

Guo Wei12,Liu Qian3,Huang Peng4,Wang Dan1,Shi Lin5,Han Dong1

Affiliation:

1. School of Athletic Performance, Shanghai University of Sport, Shanghai, China

2. Shaanxi XueQian Normal University, Xi’an, China

3. Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China

4. Shanghai Culture and Sports Promotion Center for Persons with Disabilities, Shanghai, China

5. School of Physical Education, Chengdu Sport University, Chengdu, China

Abstract

Background The purpose of this study is to examine the impact of trunk kinematic characteristics and trunk muscle electromyography (EMG) activity on propulsion speeds in wheelchair racing T54 athletes. Method The Vicon infrared high-speed 3D motion capture system was utilized to acquire kinematic data of the shoulders, elbows, wrists, and trunk from twelve T54 athletes at four different speeds (5.55 m/s, 6.94 m/s, 8.33 m/s, and personal maximum speed). Additionally, the Trigno Wireless EMG system was employed to collect synchronous surface electromyography (EMG) data from the rectus abdominis and erector spinae muscles. The kinematics and EMG data of the trunk were compared across various wheelchair propulsion speeds while also examining the correlation coefficient between wheelchair propulsion speeds and: (1) the range of motion of upper limb joints as well as the trunk; (2) the maximum angular velocities of the upper limbs joints as well as the trunk; and (3) rectus abdominis and erector spinae EMG activity. Two multiple linear stepwise regression models were utilized to examine the impact of variables that had been identified as significant through correlation coefficient tests (1) and (2) on propulsion speed, respectively. Results There were significant differences in the range of motion (p<0.01) and angular velocity (p<0.01) of the athlete’s trunk between different propulsion speeds. The range of motion (p<0.01, r = 0.725) and angular speed (p<0.01, r = 0.882) of the trunk showed a stronger correlation with propulsion speed than did upper limb joint movements. The multiple linear stepwise regression model revealed that the standardized β values of trunk motion range and angular velocity in athletes were greater than those of other independent variables in both models. In terms of the EMG variables, four of six variables from the rectus abdominis showed differences at different speeds (p<0.01), one of six variables from the erector spinae showed differences at different speeds (p<0.01). All six variables derived from the rectus abdominis exhibited a significant correlation with propulsion speed (p<0.05, r>0.3), while one variable derived from the erector spinae was found to be significantly correlated with propulsion speed (p<0.01, r = 0.551). Conclusion The movement of the trunk plays a pivotal role in determining the propulsion speed of wheelchair racing T54 athletes. Athletes are advised to utilize trunk movements to enhance their wheelchair’s propulsion speed while also being mindful of the potential negative impact on sports performance resulting from excessive trunk elevation. The findings of this study indicate that it would be beneficial for wheelchair racing T54 athletes to incorporate trunk strength training into their overall strength training regimen, with a specific emphasis on enhancing the flexion and extension muscles of the trunk.

Funder

Research on comprehensive scientific research and service of Wheelchair Racing National Training Team

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference43 articles.

1. Influence of driving posture and driving velocity on wind drag while traveling on flat land and a downward slope in the wheelchair marathon;Akashi;Taiikugaku kenkyu (Japan Journal of Physical Education, Health and Sport Sciences),2019

2. Analysis of the aerodynamics by experimental testing of an elite wheelchair sprinter;Barbosa;Procedia Engineering,2016

3. The effect of barefoot running on EMG activity in the gastrocnemius and tibialis anterior in active college-aged females;Beierle;International Journal of Exercise Science,2019

4. Kinematic analysis of the 100-m wheelchair race;Chow;The Journal of Biomechanics,2007

5. Biomechanical comparison of two racing wheelchair propulsion techniques;Chow;Medicine & Science in Sports & Exercise,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3