Developing bottom drifters to better understand the stranding locations of cold-stunned sea turtles in Cape Cod Bay, Massachusetts

Author:

Page Felicia M.1,Manning James2,Howard Lesley1ORCID,Healey Ryan1,Karraker Nancy E.1

Affiliation:

1. Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States

2. Northeast Fisheries Science Center, National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts, United States

Abstract

Every fall, juvenile sea turtles in the Northwest Atlantic Ocean are threatened by rapidly declining water temperatures. When sea turtles become hypothermic, or cold-stunned, they lose mobility—either at the surface, subsurface, or the bottom of the water column—and eventually strand at the shoreline where rescue teams associated with the Sea Turtle Stranding and Salvage Network may search for them. Understanding the effects of ocean currents on the potential stranding locations of cold-stunned sea turtles is essential to better understand stranding hotspots and increase the probability of successful discovery and recovery of turtles before they die in the cold temperatures. Traditional oceanographic drifters—instruments used to track currents—have been used to examine relationships between current and stranding locations in Cape Cod Bay, but these drifters are not representative of sea turtle morphology and do not assess how bottom currents affect stranding locations. To address these knowledge gaps, we designed new drifters that represent the shape and dimensions of sea turtles—one that can float at the surface and one that sinks to the bottom—to track both surface and bottom currents in Cape Cod Bay. We found a marked difference between the trajectories of our new drifter models and those that were previously used for similar research. These findings bring us one step closer to identifying the transport pathways for cold-stunned sea turtles and optimizing cold-stunned sea turtle search and rescue efforts in Cape Cod.

Funder

National Science Foundation Graduate Research Fellowship Program

Sophie Danforth Conservation Biology Fund

University of Rhode Island Enhancement of Graduate Research Award

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3