Integration of statistical shape modeling and alternating interpolation-based model tracking technique for measuring knee kinematics in vivo using clinical interleaved bi-plane fluoroscopy

Author:

Lu Hsuan-Yu1,Lin Cheng-Chung2,Shih Kao-Shang3,Lu Tung-Wu14,Kuo Mei-Ying5,Li Song-Ying1,Hsu Horng-Chaung6

Affiliation:

1. Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

2. Department of Electrical Engineering, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C.

3. Department of Orthopedics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.

4. Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C.

5. Department of Physical Therapy, China Medical University, Taichung, Taiwan, R.O.C.

6. Department of Orthopaedic Surgery, China Medical University, Taichung, Taiwan, R.O.C.

Abstract

Background A 2D fluoroscopy/3D model-based registration with statistical shape modeling (SSM)-reconstructed subject-specific bone models will help reduce radiation exposure for 3D kinematic measurements of the knee using clinical alternating bi-plane fluoroscopy systems. The current study aimed to develop such an approach and evaluate in vivo its accuracy and identify the effects of the accuracy of SSM models on the kinematic measurements. Methods An alternating interpolation-based model tracking (AIMT) approach with SSM-reconstructed subject-specific bone models was used for measuring 3D knee kinematics from dynamic alternating bi-plane fluoroscopy images. A two-phase optimization scheme was used to reconstruct subject-specific knee models from a CT-based SSM database of 60 knees using one, two, or three pairs of fluoroscopy images. Using the CT-reconstructed model as a benchmark, the performance of the AIMT with SSM-reconstructed models in measuring bone and joint kinematics during dynamic activity was evaluated in terms of mean target registration errors (mmTRE) for registered bone poses and the mean absolute differences (MAD) for each motion component of the joint poses. Results The mmTRE of the femur and tibia for one image pair were significantly greater than those for two and three image pairs without significant differences between two and three image pairs. The MAD was 1.16 to 1.22° for rotations and 1.18 to 1.22 mm for translations using one image pair. The corresponding values for two and three image pairs were 0.75 to 0.89° and 0.75 to 0.79 mm; and 0.57 to 0.79° and 0.6 to 0.69 mm, respectively. The MAD values for one image pair were significantly greater than those for two and three image pairs without significant differences between two and three image pairs. Conclusions An AIMT approach with SSM-reconstructed models was developed, enabling the registration of interleaved fluoroscopy images and SSM-reconstructed models from more than one asynchronous fluoroscopy image pair. This new approach had sub-millimeter and sub-degree measurement accuracy when using more than one image pair, comparable to the accuracy of CT-based methods. This approach will be helpful for future kinematic measurements of the knee with reduced radiation exposure using 3D fluoroscopy with clinically alternating bi-plane fluoroscopy systems.

Funder

Ministry of Science and Technology, Taiwan, R.O.C.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3