Pyrus calleryana extracts reduce germination of native grassland species, suggesting the potential for allelopathic effects during ecological invasion

Author:

Woods Michaela J.1,Bauer Jonathan T.2,Schaeffer Dena1,McEwan Ryan W.1

Affiliation:

1. Biology Department, University of Dayton, Dayton, OH, United States of America

2. Department of Biology and the Institute for the Environment and Sustainability, Miami University of Ohio, Oxford, OH, United States of America

Abstract

Invasive plant species’ success may be a result of allelopathy, or the release of secondary metabolites that are harmful for surrounding plant species. Allelopathy can be mediated through the abiotic environment by chemical sorption or transformation, so the substrate on which interactions occur can lead to differential outcomes in allelopathic potential. One aggressive invader, Pyrus calleryana, has become dominant in many ecosystems throughout Eastern US, and has reduced the abundance of native species where it invades. Thus, our goal was to identify if P. calleryana had allelopathic potential by testing the impact of leaf and flower leachate on gemination of six common grassland species (three grasses and three forbs) in either sterilized sand or field collected soils. Germination of five out of six tested species was reduced by P. calleryana leaf litter, with weaker impacts from flower leachate. This suggests that allelopathy is one mechanism driving the success of P. calleryana and that allelopathic effects may change with plant phenology. For instance, P. calleryana has late leaf senescence in the fall and copious blooming in the spring that may elongate the timeframe that allelopathic inhibition can occur. Further, germination was higher in sand than in soil, suggesting that the context of the abiotic environment can mediate this relationship. In our study, two grass species that could be overabundant in restored grasslands had higher germination rates in soil than sand and one was not altered by P. calleryana suggesting that this relationship could further promote the overabundance of grass species. Taken together, P. calleryana likely inhibits the germination of native species where it invades, but there is context dependency of this relationship with both soil chemistry and seasonality.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3