Effects of plant age on antioxidant activity and endogenous hormones in Alpine Elymus sibiricus of the Tibetan Plateau

Author:

Qi Juan1,Wu Zhaolin1,Liu Yanjun1,Meng Xiangjun2

Affiliation:

1. Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China

2. Gansu Grassland Technical Extension Station, Lanzhou, Gansu Province, China

Abstract

Elymus sibiricus L. is a perennial forage species that has potential to serve as a forage source in livestock grazing systems. However, E. sibiricus has been shown to have a rapid and substantial reduction of aboveground biomass and seed yield after 3 or 4 years and an accelerated aging process. To determine possible aging mechanisms, we planted E. sibiricus seeds in triplicate blocks in 2012, 2015, and 2016, respectively, and harvested samples of leaves and roots at the jointing and heading stages in 2018 and 2019 to determine oxidative indices and endogenous hormones. The fresh aboveground biomass of 4- and 5-year old plants declined by 34.2% and 52.4% respectively compared with 3-year old plants, and the seed yield declined by 12.7% and 34.1%, respectively. The water content in leaves was 51.7%, 43.3%, and 35.6%, and net photosynthesis was 7.73, 6.35, and 2.08 µmol/m2·s in 3-, 4-, and 5-year old plants, respectively. The superoxide anion radical generation rate in leaves and roots did not show any aging pattern. There was a non-significant increase in malondialdehyde concentration with plant age, particularly in leaves and roots at the heading stage in 2019. The superoxide dismutase activity showed a declining trend with age of plant roots at the jointing stage in both 2018 and 2019. The peroxidase activity declined with plant age in both leaves and roots, for example, and the catalase activity in roots 4- and 7-year old plants declined by 13.8% and 0.85%, respectively, compared to 3-year old plants at the heading stage in 2018. Therefore, the reduced capacity of the antioxidant system may lead to oxidative stress during plant aging process. Overall, the concentrations of plant hormones, auxin (IAA), gibberellin (GA), zeatin (ZT), and abscisic acid (ABA) were significantly lower in roots than in leaves. The IAA concentration in leaves and roots exhibited different patterns with plant age. The ZT concentrations in leaves of 3-year old plants was 2.39- and 2.62-fold of those in 4- and 7-year old plants, respectively at the jointing stage, and in roots, the concentration declined with plant age. The changes in the GA concentration with plant age varied between the physiological stages and between years. The ABA concentrations appeared to increase with plant age, particularly in leaves. In conclusion, the aging process of E. sibiricus was apparently associated with an increase in oxidative stress, a decrease of ZT and an increase of ABA, particularly in roots. These findings highlight the effects of plant age on the antioxidant and endogenous hormone activity of E. sibiricus. However, these plant age-related trends showed variations between plant physiological stages and between harvest years that needs to be researched in the future to develop strategies to manage this forage species.

Funder

National Natural Science Foundation of China

Assessment of Carbon Storage and Carbon Sink Value of Artificial Grassland in Hexi Irrigation Area of Gansu Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3