Identification of potential functional peptides involved in demyelinating injury in the central nervous system

Author:

Dong Xiaohua1,Sun Shuchen1,Li Jie1,Shen Sen1,Chen Wanting2,Li Tongqi3ORCID,Li Xinyuan1

Affiliation:

1. Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. Jiangnan University, Wuxi, China

3. Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Multiple sclerosis (MS) is a chronic inflammatory neurologic disease characterized by the demyelinating injury of the central nervous system (CNS). It was reported that the mutant peptide came from myelin proteolipid protein (PLP) and myelin basic protein (MBP) might play a critical role in immunotherapy function of MS. However, endogenous peptides in demyelinating brain tissue of MS and their role in the pathologic process of MS have not been revealed. Here, we performed peptidomic analysis of freshly isolated corpus callosum (CC) from the brains of CPZ-treated mice and normal diet controls of male C57BL/6 mice by LC-MS/MS. Identified a total of 217 peptides were expressed at different levels in MS mice model compared with controls. By performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, we found that the precursor protein of these differently expressed peptides (DEPs) were associated with myelin sheath and oxidative phosphorylation. Our study is the first brain peptidomic of MS mice model, revealing the distinct features of DEPs in demyelination brain tissue. These DPEs may provide further insight into the pathogenesis and complexity of MS, which would facilitate the discovery of the potential novel and effective strategy for the treatment of MS.

Funder

Natural Science Foundation of Shanghai

Famous doctor’s workshop in Changning District of Shanghai

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3