Daily accumulation rates of floating debris and attached biota on continental and oceanic island shores in the SE Pacific: testing predictions based on global models

Author:

Rech Sabine12,Arias Rene Matias1,Vadell Simón1,Gordon Dennis3,Thiel Martin124

Affiliation:

1. Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Catolica del Norte, Coquimbo, Chile

2. Center for Ecology and Sustainable Management of Oceanic Islands ESMOI, Universidad Catolica del Norte, Coquimbo, Chile

3. National Institute of Water and Atmospheric Research (NIWA), Kilbirnie, Wellington, New Zealand

4. Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile

Abstract

Background Long-distance rafting on anthropogenic marine debris (AMD) is thought to have a significant impact on global marine biogeography and the dispersal of non-indigenous species. Therefore, early identification of arrival sites of AMD and its epibionts is crucial for the prioritization of preventive measures. As accumulation patterns along global coastlines are largely unstudied, we tested if existing oceanographic models and knowledge about upstream sources of litter and epibionts can be used as a simple and cost-efficient approach for predicting probable arrival sites of AMD-rafting biota in coastal zones. Methods Using the Southeast Pacific as a model system, we studied daily accumulation rates, composition, and minimum floating times of AMD with and without epibionts on seven sandy beaches, covering the oceanic environment (Rapa Nui/Easter Island) and three regions (south, centre, north) along the Chilean continental coast, over a minimum of 10 consecutive days, and we contrast our results with predictions from published models. Results Total AMD accumulation rates varied from 56 ± 36 (mean ± standard deviation) to 388 ± 433 items km−1 d−1 and differed strongly between regions, in accordance with local geomorphology and socioeconomic conditions (presence of larger cities and rivers upstream, main economic activities, etc.). Daily accumulation of items with pelagic epibionts (indicators of a pelagic trajectory) ranged from 46 ± 29 (Rapa Nui) to 0.0 items km−1 d−1 (northern continental region). Minimum floating times of rafts, as estimated from the size of pelagic epibionts, were longest in the South Pacific Subtropical Gyre’s (SPSG) centre region, followed by the high-latitude continental region under the influence of the onshore West Wind Drift, and decreased along the continental alongshore upwelling current, towards lower latitudes. Apart from pelagic rafters, a wide range of benthic epibionts, including invasive and cryptogenic species, was found on rafts at the continental beaches. Similarly, we present another record of local benthic corals Pocillopora sp., on Rapa Nui rafts. Discussion Our results agree with the predictions made by recent models based on the prevailing wind and surface current regimes, with high frequencies of long-distance rafting in the oceanic SPSG centre and very low frequencies along the continental coast. These findings confirm the suitability of such models in predicting arrival hotspots of AMD and rafting species. Moreover, storm surges as well as site-related factors seem to influence AMD arrival patterns along the Chilean continental coast and might cause the observed high variability between sampling sites and days. Our results highlight the possible importance of rafting as a vector of along-shore dispersal and range expansions along the SE Pacific continental coast and add to the discussion about its role in benthic species dispersal between South Pacific oceanic islands.

Funder

ANID

FONDECYT POSTDOCTORADO 2020

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3