Discovery of grey matter lesion-related immune genes for diagnostic prediction in multiple sclerosis

Author:

Zhao Peiyuan1,Liu Xihong1,Wang Yunqian2,Zhang Xinyan2,Wang Han2,Du Xiaodan1,Du Zhixin1,Yang Liping1,Hou Junlin1

Affiliation:

1. School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China

2. The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China

Abstract

Background Multiple sclerosis (MS) is a chronic debilitating disease characterized by inflammatory demyelination of the central nervous system. Grey matter (GM) lesions have been shown to be closely related to MS motor deficits and cognitive impairment. In this study, GM lesion-related genes for diagnosis and immune status in MS were investigated. Methods Gene Expression Omnibus (GEO) databases were utilized to analyze RNA-seq data for GM lesions in MS. Differentially expressed genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) algorithm and protein-protein interaction (PPI) network were used to screen related gene modules and candidate genes. The abundance of immune cell infiltration was analyzed by the CIBERSORT algorithm. Candidate genes with strong correlation with immune cell types were determined to be hub genes. A diagnosis model of nomogram was constructed based on the hub genes. Gene set enrichment analysis (GSEA) was performed to identify the biological functions of hub genes. Finally, an MS mouse model was induced to verify the expression levels of immune hub genes. Results Nine genes were identified by WGCNA, LASSO regression and PPI network. The infiltration of immune cells was significantly different between the MS and control groups. Four genes were identified as GM lesion-related hub genes. A reliable prediction model was established by nomogram and verified by calibration, decision curve analysis and receiver operating characteristic curves. GSEA indicated that the hub genes were mainly enriched in cell adhesion molecules, cytokine-cytokine receptor interaction and the JAK-STAT signaling pathway, etc. Conclusions TLR9, CCL5, CXCL8 and PDGFRB were identified as potential biomarkers for GM injury in MS. The effectively predicted diagnosis model will provide guidance for therapeutic intervention of MS.

Funder

National Natural Science Foundation of China

Scientific and Technological Project in Henan Province

Natural Science Foundation of Henan Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3