Arbuscular mycorrhizal fungi alter rhizosphere fungal community characteristics of Acorus calamus to improve Cr resistance

Author:

Xia Guodong1,Zhu Sixi1,Zhao Wei1,Yang Xiuqing2,Sheng Luying1,Mao Huan1

Affiliation:

1. Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China

2. Guizhou Minzu University, Guiyang, Guizhou, China

Abstract

To investigate changes in fungal community characteristics under different Cr(VI) concentration stresses and the advantages of adding arbuscular mycorrhizal fungi (AMF), we used high throughput sequencing to characterize the fungal communities. Cr(VI) stress reduced rhizosphere soil SOM (soil organic matter) content and AMF addition improved this stress phenomenon. There were significant differences in fungal community changes under different Cr(VI) concentrations. The fungal community characteristics changed through inhibition of fungal metabolic ability, as fungal abundance increased after AMF addition, and the fungal diversity increased under high Cr(VI) concentration. The dominant phyla were members of the Ascomycota, Basidiomycota, Mortierellomycota, and Rozellomycota. Dominant groups relevant to Cr resistance were Ascomycota and Basidiomycota fungi. Moreover, Fungal community characteristics were analyzed using high-throughput sequencing of the cytochrome c metabolic pathway, NADH dehydrogenase, and NADH: ubiquinone reductase and all these functions were enhanced after AMF addition. Therefore, Cr(VI) stress significantly affects fungal community structure, while AMF addition could increase its SOM content, and metabolic capacity, and improve fungal community tolerance to Cr stress. This study contributed to the understanding response of rhizosphere fungal community in AMF-assisted wetland phytoremediation under Cr stress.

Funder

National Natural Science Foundation of China

Science and Technology Support Project of Guizhou province, China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3