Land use scenarios, seasonality, and stream identity determine the water physicochemistry of tropical cloud forest streams

Author:

Vázquez Gabriela1,Ramírez Alonso2ORCID,Favila Mario E.1ORCID,Alvarado-Barrientos M. Susana1ORCID

Affiliation:

1. Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico

2. Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA

Abstract

Background Land use is a major factor determining stream water physicochemistry. However, most streams move from one land use type to another as they drain their watersheds. Here, we studied three land use scenarios in a tropical cloud forest zone in Mexico. We addressed three main goals, to: (1) assess how land use scenarios generate different patterns in stream physicochemical characteristics; (2) explore how seasonality (i.e., dry, dry-to-wet transition, and wet seasons) might result in changes to those patterns over the year; and (3) explore whether physicochemical patterns in different scenarios resulted in effects on biotic components (e.g., algal biomass). Methods We studied Tropical Mountain Cloud Forest streams in La Antigua watershed, Mexico. Streams drained different three scenarios, streams with (1) an upstream section draining forest followed by a pasture section (F-P), (2) an upstream section in pasture followed by a forest section (P-F), and (3) an upstream forest section followed by coffee plantation (F-C). Physicochemistry was determined at the upstream and downstream sections, and at the boundary between land uses. Measurements were seasonal, including temperature, dissolved oxygen, conductivity, and pH. Water was analyzed for suspended solids, alkalinity, silica, chloride, sulfate, magnesium, sodium, and potassium. Nutrients included ammonium, nitrate, and phosphorus. We measured benthic and suspended organic matter and chlorophyll. Results Streams presented strong seasonality, with the highest discharge and suspended solids during the wet season. Scenarios and streams within each scenario had distinct physicochemical signatures. All three streams within each scenario clustered together in ordination space and remained close to each other during all seasons. There were significant scenario-season interactions on conductivity (F = 9.5, P < 0.001), discharge (F = 56.7, P < 0.001), pH (F = 4.5, P = 0.011), Cl (F = 12.2, P < 0.001), SO42− (F = 8.8, P < 0.001) and NH4+ (F = 5.4, P = 0.005). Patterns within individual scenarios were associated with stream identity instead of land use. Both P-F and F-C scenarios had significantly different physicochemical patterns from those in F-P in all seasons (Procrustes analysis, m12 = 0.05–0.25; R = 0.86–0.97; P < 0.05). Chlorophyll was significantly different among scenarios and seasons (F = 5.36, P = 0.015, F = 3.81, P = 0.42, respectively). Concentrations were related to physicochemical variables more strongly during the transition season. Conclusion Overall, land use scenarios resulted in distinctive water physicochemical signatures highlighting the complex effects that anthropogenic activities have on tropical cloud forest streams. Studies assessing the effect of land use on tropical streams will benefit from assessing scenarios, rather than focusing on individual land use types. We also found evidence of the importance that forest fragments play in maintaining or restoring stream water physicochemistry.

Funder

Mexican Consejo Nacional de Ciencia y Tecnología

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3