Optimal tillage depths for enhancing rice yield, quality and lodging resistance in the rice production systems of northeast China

Author:

Gong Diankai,Dai Guijin,Chen Ying,Yu Guangxing

Abstract

Long-term shallow tillage leads to poor development of root system and deterioration of soil quality. Field experiments were conducted during 2019–2021 to explore the effects of different tillage depths on rice root system, stem lodging resistance, rice yield and quality. The experimental treatments were comprised of four tillage depths i.e., 14 cm (TD 14) as the control, 17 cm (TD17), 20 cm (TD20), and 23 cm (TD23) by using a tractor- mounted hydraulic-adjustable. Results indicated that the TD17 treatment substantially improved the breaking resistance by 39.45–72.37% and decreased the lodging index by 11.73–29.94% of first to third node attribute, increased the stem diameter and unit length dry weight and decreased the internode length, compared with control. The TD17 treatment also reduced the chalkiness, chalkiness rate by 26.23% and 32.30%, respectively. Moreover, the viscosity value and cooking and eating quality of rice in TD17 treatment were improved 27.30% and 12.33%, respectively, compared to control. Moreover, the TD20 treatment enhanced the grain yield by 9.18% owing to the higher panicle number and grain number per panicle. The highest photosynthetic rate was also found in the TD20 treatment, which was significant higher 15.57% than TD14 treatment. Overall, the 17–20 cm was found the optimum tillage depth and therefore recommended to the farmers to get improved rice yield with minimum lodging in the rice production systems of the Northeast China.

Funder

Earmarked Fund for China Agriculture Research System

Liaoning Academy of Agricultural Sciences Collaborative Innovation Plan 2022 “Revelation and Commanding” Project

Project of Liaoning Provincial Doctoral Research Start-up Fund in 2022

Project of President’s Fund Project of Liaoning Academy of Agricultural Sciences

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3