PM2.5 exposure aggravates kidney damage by facilitating the lipid metabolism disorder in diabetic mice

Author:

Jiang Yuecheng123,Peng Yanzhe3,Yang Xia234,Yu Jiali234,Yu Fuxun23,Yuan Jing3,Zha Yan1234

Affiliation:

1. Zunyi Medical University, Guiyang, China

2. NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China

3. Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China

4. School of Medicine, Guizhou University, Guiyang, China

Abstract

Background Ambient fine particulate matter ≤ 2.5 µm (PM2.5) air pollution exposure has been identified as a global health threat, the epidemiological evidence suggests that PM2.5 increased the risk of chronic kidney disease (CKD) among the diabetes mellitus (DM) patients. Despite the growing body of research on PM2.5 exposure, there has been limited investigation into its impact on the kidneys and the underlying mechanisms. Past studies have demonstrated that PM2.5 exposure can lead to lipid metabolism disorder, which has been linked to the development and progression of diabetic kidney disease (DKD). Methods In this study, db/db mice were exposed to different dosage PM2.5 for 8 weeks. The effect of PM2.5 exposure was analysis by assessment of renal function, pathological staining, immunohistochemical (IHC), quantitative real-time PCR (qPCR) and liquid chromatography with tandem mass spectrometry (LC–MS/MS) based metabolomic analyses. Results The increasing of Oil Red staining area and adipose differentiation related protein (ADRP) expression detected by IHC staining indicated more ectopic lipid accumulation in kidney after PM2.5 exposure, and the increasing of SREBP-1 and the declining of ATGL detected by IHC staining and qPCR indicated the disorder of lipid synthesisandlipolysis in DKD mice kidney after PM2.5 exposure. The expressions of high mobility group nucleosome binding protein 1 (HMGN1) and kidney injury molecule 1 (KIM-1) that are associated with kidney damage increased in kidney after PM2.5 exposure. Correlation analysis indicated that there was a relationship between HMGN1-KIM-1 and lipid metabolic markers. In addition, kidneys of mice were analyzed using LC–MS/MS based metabolomic analyses. PM2.5 exposure altered metabolic profiles in the mice kidney, including 50 metabolites. In conclusion the results of this study show that PM2.5 exposure lead to abnormal renal function and further promotes renal injury by disturbance of renal lipid metabolism and alter metabolic profiles.

Funder

The Special Fund for Basic Scientific Research Operating of Central Public Welfare Research Institutes

The Chinese Academy of Medical Sciences

The Guizhou high-level innovative talents program

The Guizhou Clinical Research Center for Kidney Disease

The Science and Technology Fund project of Guizhou Provincial Health Commission in 2020

The Science and Technology Fund project of Guizhou Provincial Health Commission in 2021

The Youth Fund of Guizhou Provincial People’s Hospital in 2021

The Basic Research Plan of Guizhou Province in 2022

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3