Early root phenotyping in sweetpotato (Ipomoea batatas L.) uncovers insights into root system architecture variability

Author:

Duque Luis O.

Abstract

Background We developed a novel, non-destructive, expandable, ebb and flow soilless phenotyping system to deliver a capable way to study early root system architectural traits in stem-derived adventitious roots of sweetpotato (Ipomoea batatas L.). The platform was designed to accommodate up to 12 stems in a relatively small area for root screening. This platform was designed with inexpensive materials and equipped with an automatic watering system. Methods To test this platform, we designed a screening experiment for root traits using two contrasting sweetpotato genotypes, ‘Covington’ and ‘NC10-275’. We monitored and imaged root growth, architecture, and branching patterns every five days up to 20 days. Results We observed significant differences in both architectural and morphological root traits for both genotypes tested. After 10 days, root length, surface root area, and root volume were higher in ‘NC10-275’ compared to ‘Covington’. However, average root diameter and root branching density were higher in ‘Covington’. Conclusion These results validated the effective and efficient use of this novel root phenotyping platforming for screening root traits in early stem-derived adventitious roots. This platform allowed for monitoring and 2D imaging of root growth over time with minimal disturbance and no destructive root sampling. This platform can be easily tailored for abiotic stress experiments, and permit root growth mapping and temporal and dynamic root measurements of primary and secondary adventitious roots. This phenotyping platform can be a suitable tool for examining root system architecture and traits of clonally propagated material for a large set of replicates in a relatively small space.

Funder

USDA National Institute of Food and Agriculture and Hatch Appropriations

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3