Affiliation:
1. Laboratorio de Biogeografía y Sistemática, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, CDMX, Mexico
2. Indepent Research, Unaffiliated, Oulu, Finland
3. Laboratorio de Dendrocronología, Continental University, Huancayo, Junín, Perú
Abstract
Background
Soil microenvironmental variables showed an important key in α and β-tree diversity in Neotropical montane oak forest. Thus, understanding the microenvironment fluctuation at small-fragment effects on tree diversity is crucial in maintaining the montane oak ecosystems. In this study, we hypothesized that within a relatively small-fragment (151.63 ha), tree α and β-diversity fluctuate and specific soil microenvironmental factors could influence tree species diversity to answer three questions: Do tree α and β-diversity differ among transects, even in a short-distance between them? Do microenvironmental variables influence tree diversity composition that occurs within a relict Neotropical montane oak forest? Is there a particular microenvironmental variable influencing tree species-specific?
Methods
We established four permanent transects during a year in a relict Neotropical montane oak forest, we assessed tree diversity and specific microenvironmental variables (soil moisture, soil temperature, pH, depth litterfall and light incidence). This allowed us to evaluate how microenvironmental variables at small-fragment influence α and β-tree diversity and tree species-specific.
Results
Our results showed that α-diversity was not different among transects; however, β-diversity of tree species was mostly explained by turnover and soil moisture, soil temperature, and light incidence were the microenvironmental variables that triggered the replacement (i.e., one species by another). Those variables also had effect on tree species-specific: Mexican beech (Fagus mexicana), Quebracho (Quercus delgadoana), Pezma (Cyathea fulva), Aguacatillo (Beilschmiedia mexicana), Pezma (Dicksonia sellowiana var. arachneosa), and Mountain magnolia (Magnolia schiedeana).
Discussion
Our results confirm our hypothesis related to β-diversity but not with α-diversity; however, the tree community structure of the diversity was similar among transects. Our study represents the first effort to evaluate and link the soil microenvironmental effect on tree α and β-diversity, finding a high replacement in a small-fragment of Neotropical montane oak forest from eastern Mexico.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience