Zinc solubilizing bacteria and their potential as bioinoculant for growth promotion of green soybean (Glycine max L. Merr.)

Author:

Srithaworn Moltira1,Jaroenthanyakorn Jieb1,Tangjitjaroenkun Janpen2,Suriyachadkun Chanwit3,Chunhachart Orawan1

Affiliation:

1. Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand

2. Department of Resources and Environment, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi, Thailand

3. Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Patumthani, Thailand

Abstract

Zinc-solubilizing rhizobacteria can convert insoluble zinc to an accessible form and increase Zn bioavailability in soil, which help mitigate Zn deficiency in crops. In this work, 121 bacterial isolates were isolated from the rhizosphere soils of peanuts, sweet potatoes, and cassava, and their capability to solubilize Zn was evaluated using Bunt and Rovira’s agar containing 0.1% ZnO and ZnCO3. Among these isolates, six showed high Zn solubilization efficiencies ranging from 1.32 to 2.84 and 1.93 to 2.27 on the medium supplemented with 0.1% ZnO and ZnCO3, respectively. In a quantitative analysis of soluble Zn in liquid medium supplemented with 0.1% ZnO, the isolate KAH109 showed the maximum soluble zinc concentration of 62.89 mg L−1. Among the six isolates, the isolate KAH109 also produced the most indole-3-acetic acid (IAA) at 33.44 mg L−1, whereas the isolate KEX505 also produced IAA at 17.24 mg L−1 along with showing zinc and potassium solubilization activity. These strains were identified as Priestia megaterium KAH109 and Priestia aryabhattai KEX505 based on 16S rDNA sequence analysis. In a greenhouse experiment conducted in Nakhon Pathom, Thailand the ability of P. megaterium KAH109 and P. aryabhattai KEX505 to stimulate the growth and production of green soybeans was examined. The results revealed that inoculation with P. megaterium KAH109 and P. aryabhattai KEX505 considerably increased plant dry weight by 26.96% and 8.79%, respectively, and the number of grains per plant by 48.97% and 35.29% when compared to those of the uninoculated control. According to these results, both strains can be considered as a potential zinc solubilizing bioinoculant to promote the growth and production yield of green soybeans.

Funder

Kasetsart University Research and Development Institute (FF(KU) 18.64), Kasetsart University, Thailand

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3