A retrospective investigation of spatial clusters and determinants of diabetes prevalence: scan statistics and geographically weighted regression modeling approaches

Author:

Lord Jennifer1,Roberson Shamarial2,Odoi Agricola1

Affiliation:

1. Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, United States of America

2. Florida Department of Health, Tallahassee, United States of America

Abstract

Background Diabetes and its complications represent a significant public health burden in the United States. Some communities have disproportionately high risks of the disease. Identification of these disparities is critical for guiding policy and control efforts to reduce/eliminate the inequities and improve population health. Thus, the objectives of this study were to investigate geographic high-prevalence clusters, temporal changes, and predictors of diabetes prevalence in Florida. Methods Behavioral Risk Factor Surveillance System data for 2013 and 2016 were provided by the Florida Department of Health. Tests for equality of proportions were used to identify counties with significant changes in the prevalence of diabetes between 2013 and 2016. The Simes method was used to adjust for multiple comparisons. Significant spatial clusters of counties with high diabetes prevalence were identified using Tango’s flexible spatial scan statistic. A global multivariable regression model was fit to identify predictors of diabetes prevalence. A geographically weighted regression model was fit to assess for spatial non-stationarity of the regression coefficients and fit a local model. Results There was a small but significant increase in the prevalence of diabetes in Florida (10.1% in 2013 to 10.4% in 2016), and statistically significant increases in prevalence occurred in 61% (41/67) of counties in the state. Significant, high-prevalence clusters of diabetes were identified. Counties with a high burden of the condition tended to have high proportions of the population that were non-Hispanic Black, had limited access to healthy foods, were unemployed, physically inactive, and had arthritis. Significant non-stationarity of regression coefficients was observed for the following variables: proportion of the population physically inactive, proportion with limited access to healthy foods, proportion unemployed, and proportion with arthritis. However, density of fitness and recreational facilities had a confounding effect on the association between diabetes prevalence and levels of unemployment, physical inactivity, and arthritis. Inclusion of this variable decreased the strength of these relationships in the global model, and reduced the number of counties with statistically significant associations in the local model. Conclusions The persistent geographic disparities of diabetes prevalence and temporal increases identified in this study are concerning. There is evidence that the impacts of the determinants on diabetes risk vary by geographical location. This implies that a one-size-fits-all approach to disease control/prevention would be inadequate to curb the problem. Therefore, health programs will need to use evidence-based approaches to guide health programs and resource allocation to reduce disparities and improve population health.

Funder

University of Tennessee College of Veterinary Medicine Center of Excellence in Livestock Diseases and Human Health (COE) Research Award

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3