Body size and trophic level increase with latitude, and decrease in the deep-sea and Antarctica, for marine fish species

Author:

Lin Han-Yang1,Costello Mark John23ORCID

Affiliation:

1. Institute of Marine Science, University of Auckland, Auckland, New Zealand

2. Faculty of Biosciences and Aquaculture, Nord University, Bodo, Norway

3. School of Environment, University of Auckland, Auckland, New Zealand

Abstract

The functional traits of species depend both on species’ evolutionary characteristics and their local environmental conditions and opportunities. The temperature-size rule (TSR), gill-oxygen limitation theory (GOLT), and temperature constraint hypothesis (TCH) have been proposed to explain the gradients of body size and trophic level of marine species. However, how functional traits vary both with latitude and depth have not been quantified at a global scale for any marine taxon. We compared the latitudinal gradients of trophic level and maximum body size of 5,619 marine fish from modelled species ranges, based on (1) three body size ranges, <30, 30–100, and >100 cm, and (2) four trophic levels, <2.20, 2.20–2.80, 2.81–3.70, >3.70. These were parsed into 5° latitudinal intervals in four depth zones: whole water column, 0–200, 201–1,000, and 1,001–6,000 m. We described the relationship between latitudinal gradients of functional traits and salinity, sea surface and near seabed temperatures, and dissolved oxygen. We found mean body sizes and mean trophic levels of marine fish were smaller and lower in the warmer latitudes, and larger and higher respectively in the high latitudes except for the Southern Ocean (Antarctica). Fish species with trophic levels ≤2.80 were dominant in warmer and absent in colder environments. We attribute these differences in body size and trophic level between polar regions to the greater environmental heterogeneity of the Arctic compared to Antarctica. We suggest that fish species’ mean maximum body size declined with depth because of decreased dissolved oxygen. These results support the TSR, GOLT and TCH hypotheses respectively. Thus, at the global scale, temperature and oxygen are primary factors affecting marine fishes’ biogeography and biological traits.

Funder

Faculty of Science Strategic Initiative 2021– PhD Output Award, The University of Auckland, New Zealand

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference76 articles.

1. Global biogeography of marine amphipod crustaceans: latitude, regionalization, and beta diversity;Arfianti;Marine Ecology Progress Series,2020

2. Latitudinal gradients in body size in marine tardigrades;Bartels;Zoological Journal of the Linnean Society,2020

3. World maps of ocean environment variables;Basher,2020

4. Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes;Behrens;Canadian Journal of Fisheries and Aquatic Sciences,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3