Safflower (Carthamus tinctorius L.) crop adaptation to residual moisture stress: conserved water use and canopy temperature modulation are better adaptive mechanisms

Author:

Manikanta Chennamsetti12,Pasala Ratnakumar12,Kaliamoorthy Sivasakthi3,Basavaraj P. S.4ORCID,Pandey Brij Bihari1,Vadlamudi Dinesh Rahul12,Nidamarty Mukta1,Guhey Arti12,Kadirvel Palchamy1

Affiliation:

1. ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, India

2. Indira Gandhi Agricultural University, Raipur, Chhattisgarh, India

3. ICRISAT-International Crops Research Institute for the Semi-Arid Tropics Patancheru, Greater Hyderabad, Telangana, India

4. ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India

Abstract

Oilseeds with high productivity and tolerance to various environmental stresses are in high demand in the food and industrial sectors. Safflower, grown under residual moisture in the semi-arid tropics, is adapted to moisture stress at certain levels. However, a substantial reduction in soil moisture has a significant impact on its productivity. Therefore, assessing genetic variation for water use efficiency traits like transpiration efficiency (TE), water uptake, and canopy temperature depression (CTD) is essential for enhancing crop adaptation to drought. The response of safflower genotypes (n = 12) to progressive soil moisture depletion was studied in terms of water uptake, TE, and CTD under a series of pot and field experiments. The normalised transpiration rate (NTR) in relation to the fraction of transpirable soil water (FTSW) varied significantly among genotypes. The genotypes A-1, Bhima, GMU-2347, and CO-1 had higher NTR-FTSW threshold values of 0.79 (R2 = 0.92), 0.74 (R2 = 0.96), 0.71 (R2 = 0.96), and 0.71 (R2 = 0.91), respectively, whereas GMU-2644 had the lowest 0.38 (R2 = 0.93). TE was high in genotype GMU-2347, indicating that it could produce maximum biomass per unit of water transpired. At both the vegetative and reproductive stages, significant positive relationships between TE, SPAD chlorophyll metre reading (SCMR) (p < 0.01) and CTD (p < 0.01) were observed under field conditions by linear regression. The genotypes with high FTSW-NTR thresholds, high SCMR, and low CTD may be useful clues in identifying a genotype’s ability to adapt to moisture stress. The findings showed that the safflower genotypes A-1, Bhima, GMU-2347, and CO-1 exhibited an early decline and regulated water uptake by conserving it for later growth stages under progressive soil water depletion.

Funder

The Department of Biotechnology, Govt. of India

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3