Multi-omics analysis of pyroptosis regulation patterns and characterization of tumor microenvironment in patients with hepatocellular carcinoma

Author:

Shang Bingbing1,Wang Ruohan1,Qiao Haiyan2,Zhao Xixi1,Wang Liang2,Sui Shaoguang1

Affiliation:

1. Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China

2. Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, China

Abstract

Background Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver, and pyroptosis has been identified as a novel cellular program that plays a role in numerous diseases including cancer. However, the functional role of pyroptosis in HCC remains unclear. The purpose of this study is to explore the relationship between the two found hub genes and provide targets for clinical treatment. Methods The Cancer Genome Atlas (TCGA) database was used to collect the gene data and clinically-related information of patients with HCC. After the differentially expressed genes (DEGs) were identified, they were intersected with the genes related to pyroptosis, and a risk prediction model was established to predict the overall survival (OS). Subsequently, drug sensitivity analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) was used to analyze the biological characteristics of the DEGs. Different immune cell infiltration and related pathways were analyzed, and hub genes were identified by protein-protein interaction (PPI). Finally, the expression of hub genes was verified by real-time quantitative PCR (qRT-PCR) and immunohistochemistry. Results We conducted a comprehensive bioinformatics analysis to investigate the molecular mechanisms of pyroptosis in hepatocellular carcinoma (HCC). A total of 8,958 differentially expressed genes were identified, and 37 differentially expressed genes were associated with pyroptosis through intersection. Moreover, we developed an OS model with excellent predictive ability and discovered the differences in biological function, drug sensitivity, and immune microenvironment between high-risk and low-risk groups. Through enrichment analysis, we found that the differentially expressed genes are related to various biological processes. Then, 10 hub genes were identified from protein-protein interaction networks. Finally, midkine (MDK) was screened from the 10 hub genes and further verified by PCR and immunohistochemistry, which revealed its high expression in HCC. Conclusion We have developed a reliable and consistent predictive model based on the identification of potential hub genes, which can be used to accurately forecast the prognosis of patients, thus providing direction for further clinical research and treatment.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3