Comparative analysis of quantitative phosphoproteomics between two tilapias (Oreochromis niloticus and Oreochromis aureus) under low-temperature stress

Author:

Yang Changgeng1,Fan Hua1,Ge Liya1,Ma Qian2,Jiang Ming3,Wen Hua3

Affiliation:

1. Life Science & Technology School, Lingnan Normal University, Zhanjiang, China

2. College of Fisheries, Guangdong Ocean University, Zhanjiang, China

3. Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China

Abstract

As an important farmed fish, tilapia has poor tolerance to low-temperatures. At the same time, different tilapia strains have apparent differences in low-temperature tolerance. In this study, using the iTRAQ method, the phosphorylated proteomics of two tilapia strains (Oreochromis niloticus and Oreochromis aureus) with different tolerances to low-temperature stress were quantitatively and comparatively analyzed, to clarify the physiological mechanism of tilapia’s response to low-temperature stress. Through the GO and IPR analyses of differentially phosphorylated proteins, a number of similarities in physiological activities and regulatory effects were found between the two tilapias in response to low-temperature stress. Many differentially phosphorylated proteins are mainly involved in lipid metabolism, cell proliferation and apoptosis. However, the difference in endurance of low temperature of these two tilapias might be related to the differences in categories, expression and modification level of genetic products which were involved in the aforementioned physiological processes. And meanwhile, the enrichment results of KEGG showed the changes of multiple immune-related and growth-related phosphorylated proteins in the cytokine-cytokine receptor interaction pathway in O. aureus are more prominent. Furthermore, the significantly enriched pathway of carbohydrate digestion and absorption in O. niloticus may indicate that low-temperature stress exerts a more severe impact on energy metabolism. The relative results would help elucidating the molecular mechanism by which tilapia responds to low-temperature stress, and developing culture of tilapia species.

Funder

The Innovation Projects of Universities in Guangdong Province

China Agriculture Research System

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3