A preliminary study of the salivary microbiota of young male subjects before, during, and after acute high-altitude exposure

Author:

Zhou Qian12,Chen Yuhui2,Liu Guozhu3,Qiao Pengyan2,Tang Chuhua12

Affiliation:

1. The fifth Clinical Medical College of Anhui Medical University, Clinical College of Anhui Medical University, Beijing, China

2. Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, China

3. The 32183 Military Hospital of PLA, Baicheng, Jilin, China

Abstract

Background The microbial community structure in saliva differs at different altitudes. However, the impact of acute high-altitude exposure on the oral microbiota is unclear. This study explored the impact of acute high-altitude exposure on the salivary microbiome to establish a foundation for the future prevention of oral diseases. Methods. Unstimulated whole saliva samples were collected from 12 male subjects at the following three time points: one day before entering high altitude (an altitude of 350 m, pre-altitude group), seven days after arrival at high altitude (an altitude of 4,500 m, altitude group) and seven days after returning to low altitude (an altitude of 350 m, post-altitude group). Thus, a total of 36 saliva samples were obtained. 16S rRNA V3-V4 region amplicon sequencing was used to analyze the diversity and structure of the salivary microbial communities, and a network analysis was employed to investigate the relationships among salivary microorganisms. The function of these microorganisms was predicted with a Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. Results In total, there were 756 operational taxonomic units (OTUs) identified, with 541, 613, and 615 OTUs identified in the pre-altitude, altitude, and post-altitude groups, respectively. Acute high-altitude exposure decreased the diversity of the salivary microbiome. Prior to acute high-altitude exposure, the microbiome mainly consisted of Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Actinobacteria. After altitude exposure, the relative abundance of Streptococcus and Veillonella increased, and the relative abundance of Prevotella, Porphyromonas, and Alloprevotella decreased. The relationship among the salivary microorganisms was also affected by acute high-altitude exposure. The relative abundance of carbohydrate metabolism gene functions was upregulated, while the relative abundance of coenzyme and vitamin metabolism gene functions was downregulated. Conclusion Rapid high-altitude exposure decreased the biodiversity of the salivary microbiome, changing the community structure, symbiotic relationships among species, and abundance of functional genes. This suggests that the stress of acute high-altitude exposure influenced the stability of the salivary microbiome.

Funder

Military Medical Science and Technology Youth Cultivation Program

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3