Spatio-temporal variation in oxidative status regulation in a small mammal

Author:

Lemieux Vincent12,Garant Dany1,Reale Denis3,Bergeron Patrick2

Affiliation:

1. Départment de biologie, Université de Sherbrooke, Sherbrooke, Canada

2. Biological Sciences, Bishop’s University, Sherbrooke, Canada

3. Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada

Abstract

Life-history allocation trade-offs are dynamic over time and space according to the ecological and demographical context. Fluctuations in food availability can affect physiological trade-offs like oxidative status regulation, reflecting the balance between pro-oxidant production and antioxidant capacity. Monitoring the spatio-temporal stability of oxidative status in natural settings may help understanding its importance in ecological and evolutionary processes. However, few studies have yet conducted such procedures in wild populations. Here, we monitored individual oxidative status in a wild eastern chipmunk (Tamias striatus) population across the 2017 summer active period and over three study sites. Oxidative damage (MDA: Malondialdehyde levels) and non-enzymatic antioxidant levels (FRAP: Ferric reducing antioxidant power and HASC: Hypochlorous acid shock capacity) were quantified across time and space using assays optimized for small blood volumes. Our results showed an increase in oxidative damage mirrored by a decrease in FRAP throughout the season. We also found different antioxidant levels among our three study sites for both markers. Our results also revealed the effects of sex and body mass on oxidative status. Early in the active season, females and individuals with a greater body mass had higher oxidative damage. Males had higher HASC levels than females throughout the summer. This study shows that oxidative status regulation is a dynamic process that requires a detailed spatial and temporal monitoring to yield a complete picture of possible trade-offs between pro-oxidant production and antioxidant capacity.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Natural Sciences and Engineering Research Council of Canada

Bishop’s Institutional research funds

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3