Bees may drive the reproduction of four sympatric cacti in a vanishing coastal mediterranean-type ecosystem

Author:

Guerrero Pablo C.1ORCID,Antinao Claudia A.1,Vergara-Meriño Beatriz1,Villagra Cristian A.2ORCID,Carvallo Gastón O.3ORCID

Affiliation:

1. Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile

2. Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile

3. Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Abstract

Background Sympatric congeneric plants might share pollinators, or each species might avoid competition by evolving specialized traits that generate partitions in pollinator assemblages. In both cases, pollen limitation (a decrease in the quality and quantity of compatible reproductive pollen) can occur, driving the plant mating system to autogamy as a mechanism of reproductive assurance. We assessed the relationships between pollinator assemblages and mating systems in a group of sympatric congeneric plants. We attempted to answer the following questions: (i) How similar are pollinator assemblages among sympatric cactus species? (ii) Which mating systems do sympatric cactus species use? Methods We studied sympatric Eriosyce taxa that inhabit a threatened coastal strip in a mediterranean-type ecosystem in central Chile. We performed field observations on four taxa and characterized pollinators during the years 2016 and 2017. We estimated differences in the pollinator assemblages using the Bray–Curtis index. To elucidate the mating systems, we conducted hand-pollination experiments using three treatments: manual cross-pollination, automatic self-pollination, and control (unmanipulated individuals). We tested differences in seed production for statistical significance using Kruskal–Wallis analysis. Results Eriosyce subgibbosa showed a distinctive pollinator assemblage among the sympatric species that we studied (similarity ranged from 0% to 8%); it was visited by small bees and was the only species that was visited by the giant hummingbird Patagona gigas. Pollinator assemblages were similar between E. chilensis (year 2016 = 4 species; 2017 = 8) and E. chilensis var. albidiflora (2016 = 7; 2017 = 4); however, those of E. curvispina var. mutabilis (2016 = 7; 2017 = 6) were less similar to those of the aforementioned species. E. curvispina var. mutabilis showed the highest interannual variation in its pollinator assemblage (18% similarity). Reproduction in E. subgibbosa largely depends on pollinators, although it showed some degree of autogamy. Autonomous pollination was unfeasible in E. chilensis, which depended on flower visitors for its reproductive success. Both E. chilensis var. albidiflora and E. curvispina var. mutabilis showed some degree of autogamy. Discussion We observed differences in pollinator assemblages between E. subgibbosa and the remaining Eriosyce taxa, which depend on hymenopterans for pollen transfer. Pollinator assemblages showed considerable interannual variation, especially those of E. subgibbosa (ornithophilous syndrome) and E. curvispina var. mutabilis (melitophilous syndrome). Autogamous reproduction in these taxa may act as a reproductive assurance mechanism when pollinator availability is unpredictable. Our study contributes to improving our understanding of the reproductive systems of ecological interactions between threatened species in a Chilean mediterranean-type ecosystem.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT

Fondo de Investigación del Bosque Nativo

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3