Modelling the dynamics of a large rock landslide in the Dolomites (eastern Italian Alps) using multi-temporal DEMs

Author:

Gatter Ricarda1,Cavalli Marco2,Crema Stefano2,Bossi Giulia2

Affiliation:

1. MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

2. CNR-IRPI—National Research Council, Research Institute for Geo-Hydrological Protection, Padova, Italy

Abstract

Latest advances in topographic data acquisition techniques have greatly enhanced the possibility to analyse landscapes in order to understand the processes that shaped them. High-resolution Digital Elevation Models (DEMs), such as LiDAR-derived ones, provide detailed topographic information. In particular, if multi-temporal DEMs are available, it is possible to carry out a detailed geomorphic change detection analysis. This analysis may provide information about the dynamics of large landslides and may thus, be useful for landslide risk assessments. However, LiDAR-derived DEMs are mostly available only as post-event surveys. The technique is relatively recent, and local or national authorities only started widespread surveys in the last decade. Therefore, it is of a certain interest to analyse the effectiveness of DEMs derived from technical cartography to produce reliable volumetric estimates related to large landslides. This study evaluates the use of a multi-source DEM of Difference (DoD) analysis for the investigation of a large landslide –Le Laste–, which occurred on November 12, 2014 on Mount Antelao (eastern Italian Alps). The landslide initiated as a 365,000 m3rockslide close to the summit of the mountain and transformed into a debris avalanche during its runout. The comparison of pre- and post-event DEMs allowed for the identification and quantification of erosion and deposition areas, and for the estimation of landslide volume. A sound back-analysis of the landslide with the 3D numerical model DAN3D was based on this comparison and on seismic records of the event. These seismic records proved to be remarkably useful, as they allowed for the calibration of the simulated landslide velocity. This ensured the reliability of the model notwithstanding the topographic datasets, intrinsic uncertainties. We found that using a pre-event DEM derived from technical cartography tends to slightly overestimate the volume with respect to the use of the more accurate LiDAR-derived DEM. In recent years, the landslide risk around Mt. Antelao has been increasing alongside the ever-growing population and human activities in the area. Sediment accumulations produced by the Le Laste landslide significantly amplified the debris flow hazard by providing new sediment sources. Therefore, it is crucial to delineate the distribution of this material to enable an adequate debris flow hazard assessment. The material properties derived from the back-analysis of the Le Laste landslide can be used to simulate the runout of possible future events, and to generate reliable hazard zone maps, which are necessary for effective risk mitigation.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3