Individual differences show that only some bats can cope with noise-induced masking and distraction

Author:

Gomes Dylan G.E.12,Goerlitz Holger R.1

Affiliation:

1. Max Plank Institute for Ornithology, Acoustic and Functional Ecology, Seewiesen, Germany

2. Department of Biological Sciences, Boise State University, Boise, ID, United States of America

Abstract

Anthropogenic noise is a widespread pollutant that has received considerable recent attention. While alarming effects on wildlife have been documented, we have limited understanding of the perceptual mechanisms of noise disturbance, which are required to understand potential mitigation measures. Likewise, individual differences in response to noise (especially via perceptual mechanisms) are likely widespread, but lacking in empirical data. Here we use the echolocating bat Phyllostomus discolor, a trained discrimination task, and experimental noise playback to explicitly test perceptual mechanisms of noise disturbance. We demonstrate high individual variability in response to noise treatments and evidence for multiple perceptual mechanisms. Additionally, we highlight that only some individuals were able to cope with noise, while others were not. We tested for changes in echolocation call duration, amplitude, and peak frequency as possible ways of coping with noise. Although all bats strongly increased call amplitude and showed additional minor changes in call duration and frequency, these changes could not explain the differences in coping and non-coping individuals. Our understanding of noise disturbance needs to become more mechanistic and individualistic as research knowledge is transformed into policy changes and conservation action.

Funder

Max Planck Institute for Ornithology, Seewiesen

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3