Validity of an inertial system for measuring velocity, force, and power during hamstring exercises performed on a flywheel resistance training device

Author:

Martín-San Agustín Rodrigo1ORCID,Sánchez-Barbadora Mariana1ORCID,García-Vidal José A.2ORCID

Affiliation:

1. Department of Physiotherapy, University of Valencia, Valencia, España

2. Department of Physiotherapy, University of Murcia, Murcia, Spain

Abstract

Background Inertial hamstring exercises promote functional changes leading to lower rates of hamstring injuries. However, variable training measurement systems have not been specifically validated for hamstring exercises. Accordingly, this study aimed to evaluate the validity of the Inertial Measurement System (IMS) to measure the velocity, force, and power during the performance of different hamstring exercises on a flywheel resistance training device. Methods Fifteen males (average age: 22.4 ± 2.5 years; body mass: 77.3 ± 9.8 kg; height: 179.5 ± 7.4 cm; weekly physical activity: 434.0 ± 169.2 min; years of strength training: 4.3 ± 2.2 years) performed the bilateral stiff-leg deadlift (SDL), 45° hip extension (HE), and unilateral straight knee bridge (SKB) in two sessions (familiarization and evaluation) with a 1-week interval between them. The velocity, force, and power (average and peak values) in the concentric and eccentric phases for each of the exercises were recorded simultaneously with IMS and MuscleLab. Results Consistency between IMS and MuscleLab was good to excellent for all variables, with r ranges from 0.824 to 0.966 in SDL, from 0.822 to 0.971 in HE, and from 0.806 to 0.969 in SKB. Acceptable levels of agreement between devices were observed in general for all exercises, the “bias” ranging from 1.1% to 13.2%. Although MuscleLab showed higher values than IMS for peak velocity, force and power values, the effect size was only relevant for 5 of the 36 parameters. IMS is a new and valid system to monitor inertial hamstring exercises on a new flywheel device. In this way, IMS could have potential practical applications for any professional or athlete who wants to monitor inertial hamstring exercises.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3