Effects of dry-wet cycles on nitrous oxide emissions in freshwater sediments: a synthesis

Author:

Pinto Renata123,Weigelhofer Gabriele23,Brito António Guerreiro1,Hein Thomas23

Affiliation:

1. Instituto Superior de Agronomia, University of Lisbon, LEAF - Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal

2. University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria

3. WasserCluster Lunz GmbH –Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Austria

Abstract

Background Sediments frequently exposed to dry-wet cycles are potential biogeochemical hotspots for greenhouse gas (GHG) emissions during dry, wet and transitional phases. While the effects of drying and rewetting on carbon fluxes have been studied extensively in terrestrial and aquatic systems, less is known about the effects of dry-wet cycles on N2O emissions from aquatic systems. As a notable part of lotic systems are temporary, and small lentic systems can substantially contribute to GHG emissions, dry-wet cycles in these ecosystems can play a major role on N2O emissions. Methodology This study compiles literature focusing on the effects of drying, rewetting, flooding, and water level fluctuations on N2O emissions and related biogeochemical processes in sediments of lentic and lotic ecosystems. Results N2O pulses were observed following sediment drying and rewetting events. Moreover, exposed sediments during dry phases can be active spots for N2O emissions. The general mechanisms behind N2O emissions during dry-wet cycles are comparable to those of soils and are mainly related to physical mechanisms and enhanced microbial processing in lotic and lentic systems. Physical processes driving N2O emissions are mainly regulated by water fluctuations in the sediment. The period of enhanced microbial activity is driven by increased nutrient availability. Higher processing rates and N2O fluxes have been mainly observed when nitrification and denitrification are coupled, under conditions largely determined by O2 availability. Conclusions The studies evidence the driving role of dry-wet cycles leading to temporarily high N2O emissions in sediments from a wide array of aquatic habitats. Peak fluxes appear to be of short duration, however, their relevance for global emission estimates as well as N2O emissions from dry inland waters has not been quantified. Future research should address the temporal development during drying-rewetting phases in more detail, capturing rapid flux changes at early stages, and further explore the functional impacts of the frequency and intensity of dry-wet cycles.

Funder

Fundação para a Ciência e a Tecnologia, I.P.

FLUVIO –River Restoration and Management

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3