Monitoring oyster culture rafts and seagrass meadows in Nagatsura-ura Lagoon, Sanriku Coast, Japan before and after the 2011 tsunami by remote sensing: their recoveries implying the sustainable development of coastal waters

Author:

Murata Hiroki12,Hara Motoyuki3,Yonezawa Chinatsu1,Komatsu Teruhisa45

Affiliation:

1. Graduate School of Agricultural Science, Tohoku University, Sendai, Japan

2. Port and Harbor Bureau, City of Yokohama, Yokohama, Japan

3. Tohoku Ecosystem-Associated Marine Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan

4. Faculty of Commerce, Yokohama College of Commerce, Yokohama, Japan

5. Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

Abstract

Background Coastal ecosystems are blue infrastructures that support coastal resources and also aquaculture. Seagrass meadows, one of coastal ecosystems, provide substrates for epiphytic diatoms, which are food resources for cultured filter feeder organisms. Highly intensive coastal aquaculture degrades coastal environments to decrease seagrass meadows. Therefore, efficient aquaculture management and conservation of seagrass meadows are necessary for the sustainable development of coastal waters. In ria-type bays, non-feeding aquaculture of filter feeders such as oysters, scallops, and ascidians are actively practiced along the Sanriku Coast, Japan. Before the 2011 Great East Japan Earthquake, the over-deployment of oyster culture facilities polluted the bottom environment and formed an hypoxic bottom water layer due to the organic excrements from cultured oysters. The tsunami in 2011 devastated the aquaculture facilities and seagrass meadows along the Sanriku Coast. We mapped the oyster culture rafts and seagrass meadows in Nagatsura-ura Lagoon, Sanriku Coast before and after the tsunami and monitored those and environments after the tsunami by field surveys. Methods We conducted field surveys and monitored the environmental parameters in Nagatsura-ura Lagoon every month since 2014. We used high-resolution satellite remote sensing images to map oyster culture rafts and seagrass meadows at irregular time intervals from 2006 to 2019 in order to assess their distribution. In 2019, we also used an unmanned aerial vehicle to analyze the spatial variability of the position and the number of ropes suspending oyster clumps beneath the rafts. Results In 2013, the number and distribution of the oyster culture rafts had been completely restored to the pre-tsunami conditions. The mean area of culture raft increased after the tsunami, and ropes suspending oyster clumps attached to a raft in wider space. Experienced local fishermen also developed a method to attach less ropes to a raft, which was applied to half of the oyster culture rafts to improve oyster growth. The area of seagrass meadows has been expanding since 2013. Although the lagoon had experienced frequent oyster mass mortality events in summer before the tsunami, these events have not occurred since 2011. The 2011 earthquake and tsunami deepened the sill depth and widened the entrance to enhance water exchange and improve water quality in the lagoon. These changes brought the expansion of seagrass meadows and reduction of mass mortality events to allow sustainable oyster culture in the lagoon. Mapping and monitoring of seagrass meadows and aquaculture facilities via satellite remote sensing can provide clear visualization of their temporal changes. This can in turn facilitate effective aquaculture management and conservation of coastal ecosystems, which are crucial for the sustainable development of coastal waters.

Funder

Japan Ministry of Education, Culture, Sports, Science and Technology

ESPEC Foundation for Global Environment Research and Technology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference63 articles.

1. Mollusca;Adams,1848

2. Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: seagrass decline after organic loading cessation;Delgado;Oceanologica Acta,1999

3. Ueber einige neue und weniger bekannte aussereuropasche einfache Ascidien [About some new and less known non-European simple ascidia];Drasche;Denkschriften der Kaiserlichen Akademie der Wissenschaften,1884

4. Seagrass depth limits;Duarte;Aquatic Botany,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3