DNMSO; an ontology for representing de novo sequencing results from Tandem-MS data

Author:

Takan Savaş1,Allmer Jens2

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, Izmir Institute of Technology, Izmir, Turkey

2. Hochschule Ruhr West, University of Applied Sciences, Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Mülheim an der Ruhr, Germany

Abstract

For the identification and sequencing of proteins, mass spectrometry (MS) has become the tool of choice and, as such, drives proteomics. MS/MS spectra need to be assigned a peptide sequence for which two strategies exist. Either database search or de novo sequencing can be employed to establish peptide spectrum matches. For database search, mzIdentML is the current community standard for data representation. There is no community standard for representing de novo sequencing results, but we previously proposed the de novo markup language (DNML). At the moment, each de novo sequencing solution uses different data representation, complicating downstream data integration, which is crucial since ensemble predictions may be more useful than predictions of a single tool. We here propose the de novo MS Ontology (DNMSO), which can, for example, provide many-to-many mappings between spectra and peptide predictions. Additionally, an application programming interface (API) that supports any file operation necessary for de novo sequencing from spectra input to reading, writing, creating, of the DNMSO format, as well as conversion from many other file formats, has been implemented. This API removes all overhead from the production of de novo sequencing tools and allows developers to concentrate on algorithm development completely. We make the API and formal descriptions of the format freely available at https://github.com/savastakan/dnmso.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3