Experimental lung injury induces cerebral cytokine mRNA production in pigs

Author:

Kamuf Jens1,Garcia Bardon Andreas1,Ziebart Alexander1,Frauenknecht Katrin2,Folkert Konstantin1,Schwab Johannes1,Ruemmler Robert1,Renz Miriam1,Cana Denis2,Thal Serge C.1,Hartmann Erik K.1

Affiliation:

1. Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany

2. Institute of Neuropathology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany

Abstract

Background Acute respiratory distress syndrome (ARDS) is an important disease with a high incidence among patients admitted to intensive care units. Over the last decades, the survival of critically ill patients has improved; however, cognitive deficits are among the long-term sequelae. We hypothesize that acute lung injury leads to upregulation of cerebral cytokine synthesis. Methods After approval of the institutional and animal care committee, 20 male pigs were randomized to one of three groups: (1) Lung injury by oleic acid injection (OAI), (2) ventilation only (CTR) or (3) untreated. We compared neuronal numbers, proportion of neurons with markers for apoptosis, activation state of Iba-1 stained microglia cells and cerebral mRNA levels of different cytokines between the groups 18 hours after onset of lung injury. Results We found an increase in hippocampal TNFalpha (p < 0.05) and IL-6 (p < 0.05) messenger RNA (mRNA) in the OAI compared to untreated group as well as higher hippocampal IL-6 mRNA compared to control (p < 0.05). IL-8 and IL-1beta mRNA showed no differences between the groups. We found histologic markers for beginning apoptosis in OAI compared to untreated (p < 0.05) and more active microglia cells in OAI and CTR compared to untreated (p < 0.001 each). Conclusion Hippocampal cytokine transcription increases within 18 hours after the induction of acute lung injury with histological evidence of neuronal damage. It remains to be elucidated if increased cytokine mRNA synthesis plays a role in the cognitive decline observed in survivors of ARDS.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3