The kinematic analysis of the lower limb during topspin forehand loop between different level table tennis athletes

Author:

He Yuqi1,Lyu Xiang1,Sun Dong1,Baker Julien S.2ORCID,Gu Yaodong1ORCID

Affiliation:

1. Faculty of Sports Science, Ningbo University, Ningbo, China

2. Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, Hong Kong

Abstract

Background Topspin is one of the most attacking stroke in table tennis sport. The aim of this research was to investigate the kinematic characteristics of the lower limb (driving leg) during topspin forehand loop in different playing level table tennis athletes. Methods Ten male table tennis athletes performed topspin forehand loop shots with maximal force to hit the ball that was played by a professional table tennis coach. The three-dimensional Vicon motion analysis system was used to capture the kinematic information. Results The key findings from this research indicate that there were no significant differences in motion time between elite athletes (EA) and medium athletes (MA) during the entire phase (P = 0.784). EA showed significantly less knee (P < 0.001) as well as hip (P < 0.001) flexion in the BS stage when contrasted to MA, with a significant larger ankle varus (P = 0.003) as well as eversion (P < 0.001) than MA in the BS and FS phase, respectively. EA displayed a significant larger angular changing rate of ankle dorsiflexion (P < 0.001) and varus (P < 0.001) in the BS stage with ankle plantar flexion as well as eversion during the FS stage, with a significant larger ankle internal rotation (P = 0.003) and external rotation (P < 0.001) than MA in the BS and FS phase, respectively. Furthermore, EA showed significantly larger ankle dorsiflexion (P = 0.001) as well as plantarflexion (P < 0.001) ROM in the BS and FS phase respectively compared with MA. Conclusion Ankle activities in the all plane displayed significant differences in kinematic characteristics between EA and MA. MA should pay attention to the function that ankle played in the kinetic chain, such as training the lower limb muscle rapid reaction ability to improve the energy transfer efficiency and capability of the kinetic chain.

Funder

National Natural Science Foundation of China

Ningbo University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference25 articles.

1. Different center of pressure patterns within the golf stroke II: group-based analysis;Ball;Journal of Sports Sciences,2007

2. The kinematics of table tennis racquet: differences between topspin strokes;Bankosz;Journal of Sports Medicine and Physical Fitness,2017

3. Correlations between angular velocities in selected joints and velocity of table tennis racket during topspin forehand and backhand;Bankosz;Journal of Sports Science and Medicine,2018a

4. The evaluation of changes of angles in selected joints during topspin forehand in table tennis;Bankosz;Motor Control,2018b

5. Muscle stretching changes neuromuscular function involved in ankle stability;Cerqueira;Physiotherapy Theory and Practice,2020

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3