Estimating species sensitivity distributions on the basis of readily obtainable descriptors and toxicity data for three species of algae, crustaceans, and fish

Author:

Iwasaki Yuichi1,Sorgog Kiyan1

Affiliation:

1. Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Abstract

Estimation of species sensitivity distributions (SSDs) is a crucial approach to predicting ecological risks and water quality benchmarks, but the amount of data required to implement this approach is a serious constraint on the application of SSDs to chemicals for which there are few or no toxicity data. The development of statistical models to directly estimate the mean and standard deviation (SD) of the logarithms of log-normally distributed SSDs has recently been proposed to overcome this problem. To predict these two parameters, we developed multiple linear regression models that included, in addition to readily obtainable descriptors, the mean and SD of the logarithms of the concentrations that are acutely toxic to one algal, one crustacean, and one fish species, as predictors. We hypothesized that use of the three species’ mean and SD would improve the accuracy of the predicted means and SDs of the logarithms of the SSDs. We derived SSDs for 60 chemicals based on quality-assured acute toxicity data. Forty-five of the chemicals were used for model fitting, and 15 for external validation. Our results supported previous findings that models developed on the basis of only descriptors such as log KOW had limited ability to predict the mean and SD of SSD (e.g., r2 = 0.62 and 0.49, respectively). Inclusion of the three species’ mean and SD, in addition to the descriptors, in the models markedly improved the predictions of the means and SDs of SSDs (e.g., r2 = 0.96 and 0.75, respectively). We conclude that use of the three species’ mean and SD is promising for more accurately estimating an SSD and thus the hazardous concentration for 5% of species in cases where limited ecotoxicity data are available.

Funder

Japan Chemical Industry Association (JCIA) Long-range Research Initiative

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference39 articles.

1. Normal species sensitivity distributions and probabilistic ecological risk assessment;Aldenberg,2002

2. Extrapolation factors for characterizing freshwater ecotoxicity effects;Aurisano;Environmental Toxicology and Chemistry,2019

3. Future needs and recommendations in the development of species sensitivity distributions: estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures;Belanger;Integrated Environmental Assessment and Management,2017

4. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons;Burnham;Behavioral Ecology and Sociobiology,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3